
openTCS
User’s Guide

The openTCS developers

Version 6.2.0

Table of Contents
1. Introduction. 1

1.1. Purpose of the software . 1

1.2. System requirements . 1

1.3. Licensing. 1

1.4. Further documentation. 2

1.5. Support . 2

2. System overview. 3

2.1. System components and structure . 3

2.2. Plant model elements . 4

2.2.1. Point . 4

2.2.2. Path. 8

2.2.3. Location. 9

2.2.4. Location type . 9

2.2.5. Vehicle . 9

2.2.6. Block. 10

2.2.7. Layer . 11

2.2.8. Layer group . 11

2.3. Plant operation elements . 11

2.3.1. Transport order. 12

2.3.2. Order sequence . 12

2.3.3. Peripheral job . 13

2.4. Common element attributes . 13

2.4.1. Unique name . 14

2.4.2. Generic properties . 14

3. Operating the system. 15

3.1. Constructing a new plant model . 15

3.1.1. Starting the Model Editor . 15

3.1.2. Adding elements to the plant model . 15

3.1.3. Working with vehicle envelopes . 17

3.1.4. Working with layers and layer groups . 18

3.1.5. Saving the plant model . 21

3.2. Operating the plant . 21

3.2.1. Starting components for system operation . 22

3.2.2. Configuring vehicle drivers . 23

3.2.3. Creating a transport order . 24

3.2.4. Withdrawing transport orders using the Operations Desk application 24

3.2.5. Continuous creation of transport orders . 25

3.2.6. Configuring peripheral device drivers . 26

3.2.7. Creating a peripheral job . 26

3.2.8. Withdrawing peripheral jobs using the Operations Desk application. 27

3.2.9. Removing a vehicle from a running system. 28

3.2.10. Pausing and resuming the operation of vehicles . 28

4. Default strategies . 30

4.1. Default dispatcher . 30

4.1.1. Default parking position selection . 31

4.1.2. Optional parking position priorities. 31

4.1.3. Default recharging location selection . 31

4.1.4. Immediate transport order assignment . 32

4.2. Default router . 32

4.2.1. Cost functions. 32

4.2.2. Routing groups . 33

4.2.3. Avoiding/Excluding resources when computing routes . 33

4.3. Default scheduler . 34

4.3.1. Allocating resources. 34

4.3.2. Freeing resources . 34

4.3.3. Fairness of scheduling . 34

4.4. Default peripheral job dispatcher . 35

4.4.1. Reservation token . 36

5. Configuring openTCS. 37

5.1. Application language . 37

5.2. Kernel configuration . 37

5.2.1. Kernel application configuration entries . 37

5.2.2. Order pool configuration entries . 39

5.2.3. Default dispatcher configuration entries . 39

5.2.4. Default router configuration entries . 41

5.2.5. Default peripheral job dispatcher configuration entries . 42

5.2.6. Admin web API configuration entries . 43

5.2.7. Service web API configuration entries . 43

5.2.8. RMI kernel interface configuration entries . 44

5.2.9. SSL server-side encryption configuration entries. 46

5.2.10. Virtual vehicle configuration entries. 46

5.2.11. Virtual peripheral configuration entries . 47

5.2.12. Watchdog configuration entries . 47

5.3. Kernel Control Center configuration . 48

5.3.1. Kernel Control Center application configuration entries . 48

5.3.2. SSL KCC-side application configuration entries . 49

5.4. Model Editor configuration . 49

5.4.1. Model Editor application configuration entries . 50

5.4.2. SSL model editor-side application configuration entries . 50

5.4.3. Model Editor element naming scheme configuration entries . 51

5.5. Operations Desk configuration . 53

5.5.1. Operations Desk application configuration entries . 53

5.5.2. SSL operation desk-side application configuration entries . 55

6. Advanced usage examples . 56

6.1. Configuring automatic startup . 56

6.2. Automatically selecting a specific vehicle driver on startup . 56

6.3. Configuring a virtual vehicle’s characteristics . 56

6.4. Transforming coordinates sent to / received from vehicles. 57

6.5. Running kernel and its clients on separate systems . 57

6.6. Encrypting communication with the kernel . 58

6.7. Configuring automatic parking and recharging . 58

6.8. Configuring order pool cleanup . 59

6.9. Using model element properties for project-specific data . 59

Chapter 1. Introduction

1.1. Purpose of the software
openTCS (short for open Transportation Control System) is a free control system software for
coordinating fleets of automated guided vehicles (AGVs) and mobile robots, e.g. in production
plants. It should generally be possible to control any automatic vehicle with communication
capabilities with it, but AGVs are the main target.

openTCS controls vehicles independent of their specific characteristics like navigation
principle/track guidance system or load handling device. It can manage vehicles of different types
(and performing different tasks) at the same time.

openTCS itself is not a complete product you use out-of-the-box to control AGVs with. Primarily, it is
a framework/an implementation of the basic data structures and algorithms (routing of vehicles,
dispatching orders to them, managing the fleet’s traffic) needed for running an AGV system with
more than one vehicle. It tries to be as generic as possible to allow interoperation with vehicles of
practically any vendor.

As a consequence, it is usually necessary to at least create and plug in a vehicle driver (called
communication adapter in openTCS-speak) that translates between the abstract interface of the
openTCS kernel and the communication protocol your vehicle understands. (Such vehicle drivers
are similar to device drivers in operating systems, in a way.) Depending on your needs, it might also
be necessary to adapt algorithms or add project-specific strategies.

1.2. System requirements
openTCS does not come with any specific hardware requirements. CPU power and RAM capacity
highly depend on the use case, e.g. the size and complexity of the driving course and the number of
vehicles managed. Some kind of networking hardware — in most cases simply a standard Ethernet
controller — is required for communicating with the vehicles (and possibly other systems, like a
warehouse management system).

To run openTCS, a Java Runtime Environment (JRE) version 21 is required. (The directory bin of the
installed JRE, for example C:\Program Files\Eclipse Adoptium\jdk-21.0.3.9-hotspot\bin, should be
included in the enviroment variable PATH to be able to use the included start scripts.)

Due to a limitation in a software library used by openTCS (namely: Docking
Frames), some JREs are currently not compatible with openTCS. This is true e.g. for
the JRE provided by Oracle. The recommended JRE to use is the one provided by
the Adoptium project.

1.3. Licensing
openTCS is being maintained by the openTCS team at the Fraunhofer Institute for Material Flow
and Logistics.

1

https://en.wikipedia.org/wiki/Automated_guided_vehicle
https://adoptium.net/
https://www.iml.fraunhofer.de/
https://www.iml.fraunhofer.de/

The openTCS source code is licensed under the terms of the MIT License. Please note that openTCS
is distributed without any warranty - without even the implied warranty of merchantability or
fitness for a particular purpose. Please refer to the license (LICENSE.txt) for details.

1.4. Further documentation
If you intend to extend and customize openTCS, please also see the Developer’s Guide and the
JavaDoc documentation that is part of the openTCS distribution.

1.5. Support
Please note that, while Fraunhofer IML is happy to be able to release openTCS to the public as free
software and would like to see it used and improved continuously, the development team cannot
provide unlimited free support for it.

If you have technical/support questions, please post them on the project’s discussion forum, where
the community and the developers involved will respond as time permits. You can find the
discussion forum at https://github.com/openTCS/opentcs/discussions. Please remember to include
enough data in your problem report to help the developers help you, e.g.:

• The applications' log files, contained in the subdirectory log/ of the kernel, kernel control
center, model editor and operations desk application

• The plant model you are working with, contained in the subdirectory data/ of the kernel and/or
model editor application

2

https://github.com/openTCS/opentcs/discussions

Chapter 2. System overview

2.1. System components and structure
openTCS consists of the following components running as separate processes and working together
in a client-server architecture:

• Kernel (server process), running vehicle-independent strategies and drivers for controlled
vehicles

• Clients

◦ Model editor for modelling the plant model

◦ Operations desk for visualizing the plant model during plant operation

◦ Kernel control center for controlling and monitoring the kernel, e.g. providing a detailed
view of vehicles/their associated drivers

◦ Arbitrary clients for communicating with other systems, e.g. for process control or
warehouse management

Figure 1. openTCS system overview

The purpose of the openTCS kernel is to provide an abstract driving model of a transportation
system/plant, to manage transport orders and to compute routes for the vehicles. Clients can
communicate with this server process to, for instance, modify the plant model, to visualize the
driving course and the processing of transport orders and to create new transport orders.

3

Three major strategy modules within the kernel implement processing of transport orders:

• A dispatcher that decides which transport order should be processed by which vehicle.
Additionally, it needs to decide what vehicles should do in certain situation, e.g. when there
aren’t any transport orders or when a vehicle is running low on energy.

• A router which finds optimal routes for vehicles to reach their destinations.

• A scheduler that manages resource allocations for traffic management, i.e. to avoid vehicles
crashing into each other.

The openTCS distribution comes with default implementations for each of these strategies. These
implementations can be easily replaced by a developer to adapt to environment-specific
requirements.

The driver framework that is part of the openTCS kernel manages communication channels and
associates vehicle drivers with vehicles. A vehicle driver is an adapter between kernel and vehicle
and translates each vehicle-specific communication protocol to the kernel’s internal
communication schemes and vice versa. Furthermore, a driver may offer low-level functionality to
the user via the kernel control center client, e.g. manually sending telegrams to the associated
vehicle. By using suitable vehicle drivers, vehicles of different types can be managed
simultaneously by a single openTCS instance.

The model editor client that is part of the openTCS distribution allows editing of plant models,
which can be loaded into the kernel. This includes, for instance, the definition of load-change
stations, driving tracks and vehicles.

The operations desk client that is part of the openTCS distribution is used to display the
transportation system’s general state and any active transport processes, and to create new
transport orders interactively.

The kernel control center client that is part of the openTCS distribution allows controlling and
monitoring the kernel. Part of that is assigning vehicle drivers to vehicles and controlling them by
enabling the communication and monitoring them by displaying vehicle state information, for
instance.

Other clients, e.g. to control higher-level plant processes, can be implemented and attached. For
Java clients, the openTCS kernel provides an interface based on Java RMI (Remote Method
Invocation). Additionally, openTCS provides a web API for creating and withdrawing transport
orders and retrieving transport order status updates.

2.2. Plant model elements
In openTCS, a plant model consists of a set of the following elements. The attributes of these
elements that are relevant for the plant model, e.g. the coordinates of a point or the length of a
path, can be edited using the model editor client.

2.2.1. Point

Points are logical mappings of discrete vehicle positions in the driving course. In plant operation

4

mode, vehicles are ordered (and thus move) from one point to another in the model. A point carries
the following attributes:

• A type, which is one of these three:

◦ Halt position: Indicates a position at which a vehicle may halt temporarily while processing
an order, e.g. for executing an operation. The vehicle is expected to report in when it arrives
at such a position. It may not remain here for longer than necessary, though. Halt position is
the default type for points when modelling with the model editor client.

◦ Reporting position (deprecated, scheduled for removal in openTCS 6.0): Indicates a position
at which a vehicle is expected to report in only. Vehicles will not be ordered to a reporting
position, and halting or even parking at such a position is not allowed. Therefore, a route
that only consists of reporting points will be unroutable because the vehicle is not able to
halt at any position.

◦ Park position: Indicates a position at which a vehicle may halt for longer periods of time
when it is not processing orders. The vehicle is also expected to report in when it arrives at
such a position.

• A position, i.e. the point’s coordinates in the plant’s coordinate system.

• A vehicle orientation angle, which expresses the vehicle’s assumed/expected orientation while it
occupies the point.

• A set of vehicle envelopes describing the areas occupied by vehicles located at the point.

• A maximum vehicle bounding box describing the maximum bounding box that a vehicle located
at the point may have (see Bounding box for more information).

In openTCS, an angle of 0 degrees is at the 3 o’clock position, and a positive value
indicates a counter-clockwise rotation.

2.2.1.1. Layout coordinates vs model coordinates

A point has two sets of coordinates: layout coordinates and model coordinates. The layout
coordinates are merely intended for the graphical presentation in the model editor and operations
desk clients, while the model coordinates are data that a vehicle driver could potentially use or
send to the vehicle it communicates with (e.g. if the vehicle needs the exact coordinates of a
destination point for navigation). Both coordinate sets are not tied to each other per se, i.e. they
may differ. This is to allow coordinates that the system works with internally to be different from
the presentation; for example, you may want to provide a distorted view on the driving course
simply because some paths in your plant are very long and you mainly want to view all
points/locations closely together. Dragging points and therefore changing their position in the
graphical presentation only affects the corresponding layout coordinates.

To synchronize the layout coordinates with the model coordinates or the other way around you
have two options:

• Select [ Actions › Copy model values to layout ] or [ Actions › Copy layout values to model ]
to synchronize them globally.

• Select a single layout element, right click it and select [ Context menu › Copy model values to

5

layout ] or [ Context menu › Copy layout values to model ] to synchronize them only for the
selected element.

2.2.1.2. Bounding box

Figure 2. A bounding box in openTCS

A bounding box is characterised by a reference point that is — by default — located in the center of
the bounding box’s base (i.e. at height 0), named base center for the remainder of this section. The
length and width of the bounding box are symmetrical in relation to the base center and the height
is measured from the base of the bounding box.

Optionally, a reference point offset describes the position of the reference point in relation to the
base center. The coordinates of the reference point refer to a coordinate system whose origin is
located at the base center and whose axes run along the longitudinal and transverse axes of the
bounding box — i.e. the x-axis runs along the length and the y-axis along the width of the bounding
box.

For a vehicle, the bounding box is oriented so that its longitudinal axis runs parallel to the
longitudinal axis of the vehicle. For the reference point offset, positive x values indicate an offset in
the forward direction of the vehicle, positive y values an offset towards the left-hand side. As an
example, a vehicle’s physical reference point — i.e. the point which its reported coordinates refer
to — and the reference point of its bounding box are probably always aligned.

For a point, the bounding box is oriented according to the orientation angle of the point so that the
longitudinal axis of the bounding box runs parallel to the longitudinal axis of a vehicle located at
the point. For the reference point offset, positive x values indicate an offset in the forward direction
of the vehicle, positive y values an offset towards the left-hand side.

The following figure shows examples of bounding boxes for a vehicle (on the left) and a point (on
the right). (Although a bounding box is three-dimensional in openTCS, the example bounding boxes
shown here are only two-dimensional for an easy-to-understand visualisation.)

6

Figure 3. Bounding boxes for vehicles and points

In both cases, the blue dots represent the base centers of the respective bounding boxes and the
green dots represent their reference points. The dashed line represents the perimeter of the
respective bounding box. On the right, the orange dot represents the actual plant model point. In
the example above, the bounding boxes have the following properties:

Element Length [mm] Width [mm] Height [mm] Reference
offset x [mm]

Reference
offset y [mm]

Vehicle 1100 700 omitted -300 0

Point 1700 1100 omitted -500 -100

As an additional example, the following figure shows the bounding boxes in relation to each other
and what it would look like if the vehicle was located at the point. (Note that the reference points of
both bounding boxes are aligned.)

Figure 4. Relation of vehicle and point bounding boxes

7

In this example, the point’s bounding box encloses the vehicle’s bounding box completely.
However, there may be situations where this is not the case and where the vehicle’s bounding box
would protrude beyond one or more sides of the point’s bounding box. To prevent a vehicle from
being sent to a point in such situations, the router provides a dedicated cost function — see Default
router.

2.2.2. Path

Paths are connections between points that are navigable for vehicles. A path’s main attributes, next
to its source and destination point, are:

• Its length, which may be relevant information for a vehicle in plant operation mode. Depending
on the router configuration, it may also be used for computing routing costs/finding an optimal
route to a destination point.

• A maximum velocity and maximum reverse velocity, which may be relevant information for a
vehicle in plant operation mode. Depending on the router configuration, it may also be used for
computing routing costs/finding an optimal route to a destination point.

• A locked flag, which, when set, tells the router that the path may not be used when computing
routes for vehicles.

• A sequence of peripheral operations describing operations that are to be performed by
peripheral devices (in their given order) when a vehicle traverses the path.

• A set of vehicle envelopes describing the areas occupied by vehicles traversing the path.

2.2.2.1. Peripheral operation

A peripheral operation’s attributes are:

• A reference to the location representing the peripheral device by which the operation is to be
performed — see Location.

• The actual operation to be performed by the peripheral device.

• An execution trigger defining the moment at which the operation is to be performed. The
supported values are:

◦ BEFORE_MOVEMENT: The execution of the operation should be triggered before a vehicle
traverses the path.

◦ AFTER_MOVEMENT: The execution of the operation should be triggered after a vehicle has
traversed the path.

• A completion required flag, which, when set, requires the operation to be completed to allow a
vehicle to continue driving. This flag works in combination with the execution trigger. With the
BEFORE_MOVEMENT execution trigger and the completion required flag set to true, a vehicle has to
wait at the path’s source point until the operation is completed. With the AFTER_MOVEMENT
execution trigger and the completion required flag set to true, a vehicle has to wait at the path’s
destination point until the operation is completed.

8

2.2.3. Location

Locations are markers for points at which vehicles may execute special operations (load or unload
cargo, charge their battery etc.). A location’s attributes are:

• Its type, basically defining which operations are allowed at the location — see Location type.

• A set of links to points that the location can be reached from. To be of any use for vehicles in the
plant model, a location needs to be linked to at least one point.

• A locked flag, which, when set, tells the dispatcher that transport orders requiring an operation
at the location may not be assigned to vehicles.

Additionally, locations can map peripheral devices for the purpose of communicating with them
and allowing vehicles to interact with them (e.g. opening/closing fire doors along paths). See Adding
and configuring peripheral devices for details on how to add and configure peripheral devices.

2.2.4. Location type

Location types are abstract elements that group locations. A location type has only two relevant
attributes:

• A set of allowed/supported vehicle operations, defining which operations a vehicle may execute
at locations of this type.

• A set of allowed/supported peripheral operations, defining which operations peripheral devices
mapped to locations of this type may execute.

2.2.5. Vehicle

Vehicles map physical vehicles for the purpose of communicating with them and visualizing their
positions and other characteristics. A vehicle provides the following attributes:

• A set of energy level thresholds, which is composed as follows:

◦ A critical energy level, which is the threshold below which the vehicle’s energy level is
considered critical. This value may be used at plant operation time to decide when it is
crucial to recharge a vehicle’s energy storage.

◦ A good energy level, which is the threshold above which the vehicle’s energy level is
considered good. This value may be used at plant operation time to decide when it is
unnecessary to recharge a vehicle’s energy storage. When configuring this value, it must be
greater than or equal to the critical energy level.

◦ A sufficiently recharged energy level, which is the threshold above which the vehicle is
considered sufficiently recharged. This value may be used at plant operation time to decide
when a vehicle may stop charging.

◦ A fully recharged energy level, which is the threshold above which the vehicle is considered
being fully recharged. This value may be used at plant operation time to decide when a
vehicle should stop charging. When configuring this value, it must be greater than or equal
to the sufficiently recharged energy level.

• A maximum velocity and maximum reverse velocity. Depending on the router configuration, it

9

may be used for computing routing costs/finding an optimal route to a destination point.

• An integration level, indicating how far the vehicle is currently allowed to be integrated into the
system. A vehicle’s integration level can only be adjusted with the operations desk client, not
with the model editor client. A vehicle can be

◦ …ignored: The vehicle and its reported position will be ignored completely, thus the vehicle
will not be displayed in the operations desk. The vehicle is not available for transport
orders.

◦ …noticed: The vehicle will be displayed at its reported position in the operations desk, but no
resources will be allocated in the system for that position. The vehicle is not available for
transport orders.

◦ …respected: The resources for the vehicle’s reported position will be allocated. The vehicle is
not available for transport orders.

◦ …utilized: The vehicle is available for transport orders and will be utilized by the openTCS.

• A paused flag, indicating whether the vehicle is currently paused or not. A vehicle that is paused
is supposed not to move/operate. In case it is currently moving when its paused flag is set, it is
expected to stop as soon as possible. Some vehicle types may not support stopping before
reaching their movement commands' destination. In such cases, openTCS will still ensure no
further movement commands are sent to vehicles as long as they are paused.

• A set of allowed transport order types, which are strings used for filtering transport orders (by
their type) that are allowed to be assigned to the vehicle. Also see Transport order.

• A route color, which is the color used for visualizing the route the vehicle is taking to its
destination.

• An envelope key, indicating which envelopes (defined at points and paths) should be considered
for the vehicle.

• A bounding box describing the physical dimensions of the vehicle (see Bounding box for more
information).

2.2.6. Block

Blocks (or block areas) are areas for which special traffic rules may apply. They can be useful to
prevent deadlock situations, e.g. at path intersections or dead ends. A block has two relevant
attributes:

• A set of members, i.e. resources (points, paths and/or locations) that the block is composed of.

• A type, which determines the rules for entering a block:

◦ Single vehicle only: The resources aggregated in this block can only be used by a single
vehicle at the same time. This is the default type for blocks when modelling with the model
editor client.

◦ Same direction only: The resources aggregated in this block can be used by multiple vehicles
at the same time, but only if they traverse the block in the same direction.

10

The direction in which a vehicle traverses a block is determined using the first
allocation request containing resources that are part of the block — see Default
scheduler. For the requested resources (usually a point and a path) the path is
checked for a property with the key tcs:blockEntryDirection. The property’s value
may be an arbitrary character string (including the empty string). If there is no
such property the path’s name is being used as the direction.

2.2.7. Layer

Layers are abstract elements that group points, paths, locations and links. They can be useful for
modelling complex plants and dividing plant sections into logical groups (e.g. floors in a multi-floor
plant). A layer has the following properties:

• An active flag, which indicates whether a layer is currently set as the active (drawing) layer.
There can only be one active layer at a time. This property is shown only in the model editor
client.

• A visible flag, which indicates whether a layer is shown or hidden. When a layer is hidden, the
model elements it contains are not displayed.

• A descriptive name.

• A group, that the layer is assigned to — see Layer group. A layer can only be assigned to one
layer group at a time.

• A group visible flag, which indicates whether the layer group the layer is assigned to is shown or
hidden — see Layer group.

In addition to the properties listed above, layers also have an ordinal number (which is not
displayed) that defines the order of the layers in relation to each other. The order of the layers is
represented by the order of the entries in the "Layers" table in the Model Editor and the Operations
Desk clients. The topmost entry corresponds to the topmost layer (which is displayed above all
other layers) and the bottommost entry corresponds to the bottommost layer (which is displayed
below all other layers).

2.2.8. Layer group

Layer groups are abstract elements that group layers. A layer group has the following properties:

• A descriptive name.

• A visible flag, which indicates whether the layer group is shown or hidden. When a layer group
is hidden, the model elements contained in all layers assigned to it are not displayed. The
visibility state of a layer group doesn’t affect the visibility state of the layers assigned to it.

2.3. Plant operation elements
Transport orders and order sequences are elements that are available only at plant operation time.
Their attributes are primarily set when the respective elements are created.

11

2.3.1. Transport order

A transport order is a parameterized sequence of movements and operations to be processed by a
vehicle. When creating a transport order, the following attributes can be set:

• A sequence of destinations that the processing vehicle must process (in their given order). Each
destination consists of a location that the vehicle must travel to and an operation that it must
perform there.

• An optional deadline, indicating when the transport order is supposed to have been processed.

• An optional type, which is a string used for filtering vehicles that may be assigned to the
transport order. A vehicle may only be assigned to a transport order if the order’s type is in the
vehicle’s set of allowed order types. (Examples for potentially useful types are "Transport" and
"Maintenance".)

• An optional intended vehicle, telling the dispatcher to assign the transport order to the specified
vehicle instead of selecting one automatically.

• An optional set of dependencies, i.e. references to other transport orders that need to be
processed before the transport order. Dependencies are transitive, meaning that if order A
depends on order B and order B depends on order C, C must be processed first, then B, then A.
As a result, dependencies are a means to impose an order on sets of transport orders. (They do
not, however, implicitly require all the transport orders to be processed by the same vehicle.
This can optionally be achieved by also setting the intended vehicle attribute of the transport
orders.) The following image shows an example of dependencies between multiple transport
orders:

Figure 5. Transport order dependencies

2.3.2. Order sequence

The operations desk application currently does not provide a way to create order
sequences. They can only be created programmatically, using dedicated clients
that are not part of the openTCS distribution.

An order sequence describes a process spanning multiple transport orders which are to be
executed subsequently — in the exact order defined by the sequence — by a single vehicle. Once a
vehicle is assigned to an order sequence, it may not process transport orders not belonging to the
sequence, until the latter is finished.

Order sequences are useful when a complex process to be executed by one and the same vehicle
cannot be mapped to a single transport order. This can be the case, for instance, when the details of

12

some steps in the process become known only after processing previous steps.

An order sequence carries the following attributes:

• A sequence of transport orders, which may be extended as long the complete flag (see below) is
not set, yet.

• A complete flag, indicating that no further transport orders will be added to the sequence. This
cannot be reset.

• A failure fatal flag, indicating that, if one transport order in the sequence fails, all orders
following it should immediately be considered as failed, too.

• A finished flag, indicating that the order sequence has been processed (and the vehicle is not
bound to it, anymore). An order sequence can only be marked as finished if it has been marked
as complete before.

• An optional type — see Transport order. An order sequence and all transport orders it contains
(must) share the same type.

• An optional intended vehicle, telling the dispatcher to assign the order sequence to the specified
vehicle instead of selecting one automatically. If set, all transport orders added to the order
sequence must carry the same intended vehicle value.

Figure 6. An order sequence

2.3.3. Peripheral job

A peripheral job describes an operation to be performed by a peripheral device. A peripheral job
carries the following attributes:

• An operation to be performed by a peripheral device — see Peripheral operation.

• A reservation token that may be used to reserve a peripheral device. A peripheral device that is
reserved for a specific token can only process jobs which match that reservation token — see
Reservation token.

• An optional related vehicle referencing the vehicle by which the peripheral job was created.

• An optional related transport order referencing the transport order in which context the
peripheral job was created.

2.4. Common element attributes

13

2.4.1. Unique name

Every plant model and plant operation element has a unique name identifying it in the system,
regardless of what type of element it is. Two elements may not be given the same name, even if e.g.
one is a point and the other one is a transport order.

2.4.2. Generic properties

In addition to the listed attributes, it is possible to define arbitrary properties as key-value pairs for
all driving course elements, which for example can be read and evaluated by vehicle drivers or
client software. Both the key and the value can be arbitrary character strings. For example, a key-
value pair "IP address":"192.168.23.42" could be defined for a vehicle in the model, stating which
IP address is to be used to communicate with the vehicle; a vehicle driver could now check during
runtime whether a value for the key "IP address" was defined, and if yes, use it to automatically
configure the communication channel to the vehicle. Another use for these generic attributes can
be vehicle-specific actions to be executed on certain paths in the model. If a vehicle should, for
instance, issue an acoustic warning and/or turn on the right-hand direction indicator when
currently on a certain path, attributes with the keys "acoustic warning" and/or "right-hand
direction indicator" could be defined for this path and evaluated by the respective vehicle driver.

14

Chapter 3. Operating the system
To create or to edit the plant model of a transport system, use the Model Editor application.

As a graphical frontend for a transportation control system based on an existing plant model, use
the Operations Desk application. Note that the Operations Desk application always requires a
running openTCS kernel that it can connect to.

Starting an application is done by executing the respective Unix shell script (*.sh) or Windows
batch file (*.bat).

3.1. Constructing a new plant model
These instructions demonstrate how a new plant model is created and filled with driving course
elements so that it can eventually be used for plant operation.

3.1.1. Starting the Model Editor

1. Launch the Model Editor (startModelEditor.bat/.sh).

2. The Model Editor will start with a new, empty model, but you can also load a model from a file

([ File › Load Model ]) or the current kernel model ([ File › Load current kernel model ]). The
latter option requires a running kernel that the Model Editor client can connect to.

3. Use the graphical user interface of the Model Editor client to create an arbitrary driving course
for your respective application/project. How you can add elements like points, paths and
vehicles to your driving course is explained in detail in the following section. Whenever you

want to start over, select [ File › New Model ] from the main menu.

3.1.2. Adding elements to the plant model

Figure 7. Control elements in the Model Editor client

15

1. Create three points by selecting the point tool from the driving course elements toolbar (see red
frame in the screenshot above) and click on three positions on the drawing area.

2. Link the three points with paths to a closed loop by

a. selecting the path tool from the driving course elements toolbar.

b. clicking on a point, dragging the path to the next point and releasing the mouse button
there.

3. Create two locations by selecting the location tool from the driving course elements toolbar and
clicking on any two free positions on the drawing area. As a location type does not yet exist in
the plant model, a new one is created implicitly when creating the first location, which can be
seen in the tree view to the left of the drawing area.

4. Link the two locations with (different) points by

a. selecting the link tool from the driving course elements toolbar.

b. clicking on a location, dragging the link to a point and releasing the mouse button.

5. Create a new vehicle by clicking on the vehicle button in the driving course elements toolbar.

6. Define the allowed operations for vehicles at the newly created locations by

a. selecting the locations' type in the tree view to the left of the drawing area (see blue frame in
the screenshot above).

b. clicking the value cell labelled [ Supported vehicle operations ] in the property window
below the tree view.

c. entering the allowed operations as arbitrary text in the dialog shown, for instance "Load
cargo" and "Unload cargo".

d. Optionally, you can choose a symbol for locations of the selected type by editing the property
"Symbol".

You will not be able to create any transport orders and assign them to vehicles
when operating the system unless you create locations in your plant model, link
these locations to points in the driving course and define the operations that
vehicles may execute with the respective location types.

3.1.2.1. Adding and configuring peripheral devices

As described in Plant model elements, locations can be used to map peripheral devices. This means
that, after executing the steps described above, there are now two locations available in the plant
model that can potentially be used to integrate two peripheral devices. To integrate an exemplary
peripheral device, the following additional steps are required:

1. Associate a location with a peripheral device by

a. selecting the location in the tree view to the left of the drawing area (e.g. "Location-0001" in
the screenshot above).

b. clicking the value cell labelled [ Miscellaneous ] in the property window below the tree
view.

c. adding a key-value pair with the key tcs:loopbackPeripheral and an empty value.

16

2. Define the allowed operations for the peripheral device associated with this location by

a. selecting the locations' type in the tree view to the left of the drawing area (e.g. "LType-0001"
in the screenshot above).

b. clicking the value cell labelled [ Supported peripheral operations ] in the property
window below the tree view.

c. entering the allowed operations as arbitrary text in the dialog shown, for instance "Open
door" and "Close door".

3. Optionally, define peripheral operations on paths by

a. selecting a path in the tree view to the left of the drawing area (e.g. "Point-0001 --- Point-
0002" in the screenshot above).

b. clicking the value cell labelled [ Peripheral operations ] in the property window below the
tree view.

c. configuring and adding peripheral operations via the dialog shown.

The steps above describe the process of associating a location with a virtual
peripheral device that is controlled by the loopback peripheral driver. Unlike
vehicles, which don’t require any additional configuration for the loopback vehicle
driver to be assigned to them, locations specifically require the aforementioned
property for the peripheral loopback driver to be assigned to them.

You will not be able to create any peripheral jobs and assign them to peripheral
devices when operating the system unless you create locations in your plant
model, associate these locations with peripheral devices and define the operations
that peripheral devices may execute with the respective location types.

3.1.3. Working with vehicle envelopes

As described in Plant model elements, vehicle envelopes can be defined at points and paths. A
vehicle envelope is a sequence of vertices (i.e., points with x and y coordinates) that, when
connected in their defined order, represent the area that may be occupied by a vehicle. In addition
to the sequence of vertices, an envelope key is always assigned to a vehicle envelope. By referencing
an envelope key, a vehicle indicates which envelopes (that may be defined at points or paths)
should be considered when it allocates resources. (For more details on this, see Default scheduler.)
With this, it is possible to prevent vehicles from allocating areas intersecting with areas already
allocated by other vehicles.

If an envelope key is set for a vehicle, but no envelope with the respective key is
defined at a specific resource (i.e. point or path), no envelope will be considered
for the vehicle when it allocates that resource.

17

Figure 8. Defining and editing vehicle envelopes for points and paths

Figure 9. Setting an envelope key for vehicles

3.1.4. Working with layers and layer groups

In addition to adding elements to the plant model, the Model Editor allows plant models to be

18

created with different layers and layer groups. For more details on the properties of layers and
layer groups see Layer and Layer group.

With the Operations Desk application it’s only possible to show/hide layers and
layer groups, but not to manipulate them.

3.1.4.1. Layers

A layer groups points, paths, locations and links and allows the driving course elements it contains
to be shown or hidden on demand. Layers can be created, removed and edited using the panel
shown in the screenshot below (see red frame). There are a few things to keep in mind when
working with layers:

• There always has to be at least one layer.

• When adding a new layer, it always becomes the active layer.

• Removing a layer results in the driving course elements it contains to be removed as well.

• When adding model elements (i.e. points, paths, etc.) they are always placed on the active layer.

• Links (between locations and points) are always placed on the same layer the respective
location is placed on, regardless of the active layer.

• When performing "copy & paste", "cut & paste" or "duplicate" operations on driving course
elements, the copies are always placed on the active layer.

In the Operations Desk application the visibility of layers (and layer groups) also
affects whether vehicle elements are displayed in the plant model or not. Vehicle
elements inherit the visibility of the point at which they are reported. If a vehicle is
reported at a point that is part of a hidden layer (or layer group), the vehicle
element is not displayed in the plant model.

19

Figure 10. Layers panel (Toolbar buttons: Add layer, Remove (selected) layer, Move (selected) layer up,
Move (selected) layer down)

3.1.4.2. Layer groups

A layer group groups, as the name implies, one or more layers and allows multiple layers to be
shown or hidden at once. Layer groups can be created, removed and edited using the panel shown
in the screenshot below (see red frame). There are a few things to keep in mind when working with
layer groups:

• There always has to be at least one layer group.

• Removing a layer group results in all layers assigned to it to be removed as well.

20

Figure 11. Layer groups panel (Toolbar buttons: Add layer group, Remove (selected) layer group)

3.1.5. Saving the plant model

You have two options to save the model: on your local hard drive or in a running kernel instance
the Model Editor can connect to.

3.1.5.1. Saving the model locally

Select [ File › Save Model ] or [ File › Save Model As… ] and enter a file name for the model.

3.1.5.2. Loading the model into a running kernel

Select [ File › Upload model to kernel ] and your model will be loaded into the kernel, letting you
use it for operating a plant. This, though, requires you to save it locally first. Note that any model
that was previously loaded in the kernel will be replaced, as the kernel can only store a single
model at a time.

3.2. Operating the plant
These instructions explain how the newly created model that was loaded into the kernel can be
used for plant operation, how vehicle drivers are used and how transport orders can be created
and processed by a vehicle.

21

3.2.1. Starting components for system operation

Figure 12. Operations Desk application displaying plant model

1. Start the kernel (startKernel.bat/.sh).

a. If this is your first time running the kernel, you need to load an existing plant model from
the Model Editor into the kernel first. (See Loading the model into a running kernel).

2. Start the Kernel Control Center application (startKernelControlCenter.bat/.sh)

3. Start the Operations Desk application (startOperationsDesk.bat/.sh)

4. In the Kernel Control Center, select the [ Vehicle driver ] tab. Then select, configure and start
driver for each vehicle in the model.

a. The list on the left-hand side of the window shows all vehicles in the chosen model.

b. A detailed view for a vehicle can be seen on the right-hand side of the driver panel after
double-clicking on the vehicle name in the list. The specific design of this detailed view
depends on the driver associated with the vehicle. Usually, status information sent by the
vehicle (e.g. current position and mode of operation) is displayed and low-level settings (e.g.
for the vehicle’s IP address) are provided here.

c. Right-clicking on the list of vehicles shows a popup menu that allows to attach drivers to
selected vehicles.

d. For a vehicle to be controlled by the system, a driver needs to be attached to the vehicle and
enabled. (For testing purposes without real vehicles that could communicate with the
system, the so-called loopback driver can be used, which provides a virtual vehicle that
roughly simulates a real one.) How you attach and enable a vehicle driver is explained in
detail in Configuring vehicle drivers.

22

Figure 13. Driver panel with detailed view of a vehicle

3.2.2. Configuring vehicle drivers

1. Switch to the Kernel Control Center application.

2. Associate a vehicle with the loopback driver by right-clicking on the vehicle in the vehicle list of

the driver panel and selecting the menu entry [ Driver › Loopback adapter (virtual vehicle) ].

3. Open the detailed view of the vehicle by double-clicking on the vehicle’s name in the list.

4. In the detailed view of the vehicle that is now shown to the right of the vehicle list, select the
[ Loopback options ] tab.

5. Enable the driver by ticking the checkbox [ Enable loopback adapter ] in the [ Loopback
options ] tab or the checkbox in the [ Enabled? ] column of the vehicle list.

6. In the [ Loopback options ] tab or in the vehicles list, select a point from the plant model to
have the loopback adapter report this point to the kernel as the (virtual) vehicle’s current
position. In the [ Loopback options ] tab, this can be done by clicking on the [ Position ] text
field. (In a real-world application, a vehicle driver communicating with a real vehicle would
automatically report the vehicle’s current position to the kernel as soon as it is known.)

7. Switch to the Operations Desk client. An icon representing the vehicle should now be shown at
the point on which you placed it using the loopback driver.

8. Right-click on the vehicle and select [ Context menu › Change integration level › …to utilize
this vehicle for transport orders ] to allow the kernel to dispatch the vehicle. The vehicle is
then available for processing orders, which is indicated by an integration level TO_BE_UTILIZED
in the property panel at the bottom left of the Operations Desk application’s window. (You can

revert this by right-clicking on the vehicle and selecting [ Context menu › Change integration

23

level › …to respect this vehicle’s position ] in the context menu. The integration level shown is
now TO_BE_RESPECTED and the vehicle will not be dispatched for transport orders any more.)

3.2.3. Creating a transport order

To create a transport order, the Operations Desk application provides a dialog window presented

when selecting [ Actions › Create transport order… ] from the menu. Transport orders are defined
as a sequence of destination locations at which operations are to be performed by the vehicle
processing the order. You can select a destination location and operation from a dropdown menu.
You may also optionally select the vehicle intended to process this order. If none is explicitly
selected, the control system automatically assigns the order to a vehicle according to its internal,
configurable strategies (see Default dispatcher configuration entries). You may also optionally select
or define a type for the transport order to be created. Furthermore, a transport order can be given
a deadline specifying the point of time at which the order should be finished at the latest. This
deadline will primarily be considered when there are multiple transport orders in the pool and
openTCS needs to decide which to assign next.

To create a new transport order, do the following:

1. Select the menu entry [ Actions › Create transport order… ].

2. In the dialog shown, click the [ Add ] button and select a location as the destination and an
operation which the vehicle should perform there. You can add an arbitrary number of
destinations to the order this way. They will be processed in the given order.

3. After creating the transport order with the given destinations by clicking [ OK ], the kernel will
look for a vehicle that can process the order. If a vehicle is found, it is assigned the order
immediately and the route computed for it will be highlighted in the Operations Desk
application. The loopback driver then simulates the vehicle’s movement to the destinations and
the execution of the operations.

3.2.4. Withdrawing transport orders using the Operations Desk application

A transport order can be withdrawn from a vehicle that is currently processing it. When
withdrawing a transport order, its processing will be cancelled and the vehicle (driver) will not
receive any further movement commands for it. A withdrawal can be issued by right-clicking on

the respective vehicle in the Operations Desk application, selecting [ Context menu › Withdraw
transport order ] and then selecting one of the following actions:

• '…and let the vehicle finish movement': The vehicle will process any movement commands it
has already received and will stop after processing them. This type of withdrawal is what
should normally be used for withdrawing a transport order from a vehicle.

• '…and stop the vehicle immediately': In addition to what happens in the case of a regular
withdrawal, the vehicle is also asked to discard all movement commands it has already
received. (This should make it come to a halt very soon in most cases. However, if and how far
exactly it will still move highly depends on the vehicle’s type, its current situation and how
communication between openTCS and this type of vehicle works.) Furthermore, all reservations
for resources on the withdrawn route (i.e. the next paths and points) except for the vehicle’s
currently reported position are cancelled, making these resources available to other vehicles.

24

This forced withdrawal should be used with great care and usually only when the vehicle is
currently not moving!

Since forced withdrawal frees paths and points previously reserved for the
vehicle, it is possible that other vehicles acquire and use these resources
themselves right after the withdrawal. At the same time, if the vehicle was moving
when the withdrawal was issued, it may - depending on its type - not have come to
a halt, yet, and still move along the route it had previously been ordered to follow.
As the latter movement is not coordinated by openTCS, this can result in a collision
or deadlock between the vehicles! For this reason, it is highly recommended to
issue a forced withdrawal only if it is required for some reason, and only if the
vehicle has already come to a halt on a position in the driving course or if other
vehicles need not be taken into account. In all other cases, the regular withdrawal
should be used.

Processing of a withdrawn transport order cannot be resumed later. To resume a transportation
process that was interrupted by withdrawing a transport order, you need to create a new transport
order, which may, of course, contain the same destinations as the withdrawn one. Note, however,
that the new transport order may not be created with the same name. The reason for this is:

1. Names of transport orders need to be unique.

2. Withdrawing a transport order only aborts its processing, but does not remove it from the
kernel’s memory, yet. The transport order data is kept as historical information for a while
before it is completely removed. (For how long the old order is kept depends on the kernel
application’s configuration — see Order pool configuration entries.)

As a result, a name used for a transport order may eventually be reused, but only after the actual
data of the old order has been removed.

3.2.5. Continuous creation of transport orders

The Operations Desk application can easily be extended via custom plugins. As a
reference, a simple load generator plugin is included which here also serves as a
demonstration of how the system looks like during operation. Details about how
custom plugins can be created and integrated into the Operations Desk application
can be found in the developer’s guide.

1. In the Operations Desk application, select [ View › Plugins › Continuous load ] from the menu.

2. Choose a trigger for creating new transport orders: New orders will either be created only once,
or whenever the number of unprocessed orders in the system drops below a specified limit, or
after a specified timeout has expired.

3. By using an order profile you may decide whether the transport orders’ destinations should be
chosen randomly or whether you want to choose them yourself.

Using [ Create orders randomly ], you define the number of transport orders that are to be
generated at a time, and the number of destinations a single transport order should contain.
Since the destinations will be selected randomly, the orders created do not necessarily make

25

sense for a real-world system.

Using [ Create orders according to definition ], you can define an arbitrary number of
transport orders, each with an arbitrary number of destinations and properties, and save and
load your list of transport orders.

4. Start the order generator by activating the corresponding checkbox at the bottom of the
[ Continuous load ] panel. The load generator will then generate transport orders according to
its configuration until the checkbox is deactivated or the panel is closed.

3.2.6. Configuring peripheral device drivers

In order to perform the following steps, make sure you first associate a location
with a peripheral device, as described in Adding and configuring peripheral
devices.

1. Switch to the Kernel Control Center application.

2. Select the [ Peripheral driver ] tab.

◦ A location should already be associated with the peripheral loopback driver.

3. Open the detailed view of the location by double-clicking on the location’s name in the list.

4. In the detailed view of the location that is now shown to the right of the peripheral device list,
select the [ Loopback options ] tab.

5. Enable the driver by ticking the checkbox in the [ Enabled? ] column of the peripheral device
list.

6. Switch to the Operations Desk client.

7. The peripheral device is now available for processing peripheral jobs.

3.2.7. Creating a peripheral job

A peripheral job is defined as a single operation that is to be performed by the peripheral device
processing the job. Peripheral jobs can be created either explicitly or implicitly; both ways are
described in the following sections.

For information on how peripheral jobs are assigned to peripheral devices, see
Default peripheral job dispatcher. For information on how the control system’s
internal strategies for assigning peripheral jobs can be configured, see Default
peripheral job dispatcher configuration entries.

3.2.7.1. Explicit creation of peripheral jobs

To create a new peripheral job, do the following in the Operations Desk application:

1. Select the menu entry [ Actions › Create peripheral job… ].

2. In the dialog shown, select the location associated with the peripheral device that should be
assigned with the peripheral job and an operation which the peripheral device should perform.

26

Additionally, enter some arbitrary text for the reservation token. (For the moment, the
reservation token doesn’t really matter. The only important thing is that it is not empty. For
more details on the reservation token, see Default peripheral job dispatcher.)

3. After creating the peripheral job by clicking [ OK ], the kernel will try to assign it to the
peripheral device associated with the given location to process the job. Once the peripheral job
is assigned, the loopback driver simulates the peripheral devices’s execution of the operation.

While it is fine to use this option for creating peripheral jobs, the next option is the
preferred one as it allows direct interaction between vehicles and peripheral
devices.

3.2.7.2. Implicit creation of peripheral jobs

In order for implicit creation of peripheral jobs to work, make sure to first define
peripheral operations on paths as described in Adding and configuring peripheral
devices.

Peripheral jobs can be created implicitly by vehicles as they traverse paths that have peripheral
operations defined on them. When exactly a peripheral job is created for a peripheral operation
defined on a path depends on the configuration of the peripheral operation itself. As described in
Peripheral operation, the execution trigger of a peripheral operation defines when the operation is
to be performed by the peripheral device. Note the following regarding the creation time of the
peripheral job belonging to a peripheral operation:

• AFTER_ALLOCATION (previously named BEFORE_MOVEMENT): The peripheral job is created as soon as
the resource for the corresponding path has been allocated for the vehicle. This means that if a
vehicle can accept multiple (points and) paths in advance, a peripheral job may be created
before the vehicle even reaches the actual path.

• AFTER_MOVEMENT: The peripheral job is created as soon as the vehicle has completely traversed the
path and reported the corresponding movement command as executed (i.e. when the vehicle
reached the respective end point of the path).

3.2.8. Withdrawing peripheral jobs using the Operations Desk application

How a peripheral job can be withdrawn depends on whether it is related to a transport order:

• Peripheral jobs that are not related to transport orders and peripheral jobs that are related to
transport orders in a final state (finished or failed) can be withdrawn by selecting them in the
peripheral jobs table and clicking the withdrawal button shown above the table.

• Peripheral jobs that are related to transport orders will implicitly be aborted when the
respective transport order is withdrawn. Withdrawing them independently from the related
transport order is not supported (unless the related transport order is already in a final
state — see above.)

◦ For transport orders that are withdrawn regularly, related peripheral jobs are aborted after
the vehicle has completed its pending movements.

◦ For transport orders that are withdrawn forcibly, related peripheral jobs are aborted

27

immediately.

3.2.8.1. Consequence of peripheral jobs failing

When a peripheral job fails, the related transport order (if any) is implicitly withdrawn under the
following circumstances:

• The peripheral job was created implicitly by a vehicle traversing a path (see Implicit creation of
peripheral jobs).

• The completion required flag of the peripheral job’s peripheral operation is set to true.

In such cases, it is not reasonable to continue the transport order, as the completion required flag
not only indicates that the vehicle should wait for the peripheral operation to be completed, but
also for it to be completed successfully. Otherwise, the prerequisites for continuing driving / the
transport order may not be met.

3.2.9. Removing a vehicle from a running system

There may be situations in which you want to remove a single vehicle from a system, e.g. because
the vehicle temporarily cannot be used by openTCS due to a hardware defect that has to be dealt
with first. The following steps will ensure that no further transport orders are assigned to the
vehicle and that the resources it might still be occupying are freed for use by other vehicles.

1. In the Operations Desk application, right-click on the vehicle and select [ Context menu ›
Change integration level › …to ignore this vehicle ] to disable the vehicle for transport order
processing and to free the point in the driving course that the vehicle is occupying.

2. In the Kernel Control Center application, disable the vehicle’s driver by unticking the checkbox
[ Enable loopback adapter ] in the [ Loopback options ] tab or the checkbox in the
[ Enabled? ] column of the vehicle list.

3.2.10. Pausing and resuming the operation of vehicles

The Operations Desk application provides two buttons with which the operation of vehicles can be
paused or resumed. However, in order for these buttons to have any effect, the respective vehicle
drivers for the vehicles in use have to implement and support this feature.

28

Figure 14. Pause and resume buttons in the Operations Desk application

29

Chapter 4. Default strategies
openTCS comes with a default implementation for each of the strategy modules. These
implementations can easily be replaced to adapt to project-specific requirements. (See developer’s
guide.)

4.1. Default dispatcher
When either a transport order or a vehicle becomes available, the dispatcher needs to decide what
should happen with which transport order and which vehicle should do what. To make this
decision, the default dispatcher takes the following steps:

1. New transport orders are prepared for processing. This includes checking general routability
and unfinished dependencies.

2. Updates of processes that are currently active are performed. This includes:

◦ Withdrawals of transport orders

◦ Successful completion of transport orders

◦ Assignment of subsequent transport orders for vehicles that are processing order sequences

3. Vehicles that are currently unoccupied are assigned to processable transport orders, if possible.

◦ Criteria for a vehicle to be taken into account are:

▪ It must be at a known position in the driving course.

▪ It may not be assigned to a transport order, or the assigned transport order must be
dispensable. That is the case with parking orders, for instance, or with recharging orders
if the vehicle’s energy level is not critical.

▪ Its energy level must not be critical. (Vehicles with critical energy level are taken into
account only for transport orders with which the first destination operation is a
recharge operation.)

◦ Criteria for a transport order to be taken into account are:

▪ It must be generally dispatchable.

▪ It must not be part of an order sequence that is already being processed by a vehicle.

◦ The assignment mechanics are as following:

▪ If there are less unoccupied vehicles than processable transport orders, the list of
vehicles is sorted by configurable criteria. The default dispatcher then iterates over the
sorted list and, for every vehicle, finds all orders processable by it, computes the
required routes, sorts the candidates by configurable criteria and assigns the first one.

▪ If there are less processable transport orders than unoccupied vehicles, the list of
transport orders is sorted by configurable criteria. The default dispatcher then iterates
over the sorted list and, for every transport order, finds all vehicles that could process it,
computes the required routes, sorts the candidates by configurable criteria and assigns
the first one.

▪ For configuration options regarding the sorting criteria, see Default dispatcher

30

configuration entries.

4. Vehicles that are still unoccupied are sent to a recharging location, if possible.

◦ Criteria for a vehicle to be taken into account are:

▪ It must be at a known position in the driving course.

▪ Its energy level is degraded.

5. Vehicles that are still unoccupied are sent to a parking position, if possible.

◦ Criteria for a vehicle to be taken into account are:

▪ It must be at a known position in the driving course.

▪ It must not be at a parking position already.

4.1.1. Default parking position selection

When sending a vehicle to a parking position, the closest (according to the router) unoccupied
position is selected by default. It is possible to assign fixed positions to vehicles instead, by setting
properties with the following keys on them:

• tcs:preferredParkingPosition: Expected to be the name of a point in the model. If this point is
already occupied, the closest unoccupied parking position (if any) is selected instead.

• tcs:assignedParkingPosition: Expected to be the name of a point in the model. If this point is
already occupied, the vehicle is not sent to any other parking position, i.e. remains where it is.
Takes precedence over tcs:preferredParkingPosition.

4.1.2. Optional parking position priorities

Optionally (see Default dispatcher configuration entries for how to enable it), parking positions
may be explicitly prioritized, and vehicles can be reparked in a kind of "parking position queues".
This can be desirable e.g. to park vehicles close to locations that are frequent first destinations for
transport orders. (For example, imagine a plant in which goods are transported from A to B all the
time. Even if there currently aren’t any transport orders, it might nevertheless be a good idea to
prefer parking positions near A to reduce reaction times when transport orders arrive.)

To assign a priority to a parking position, set a property with the key tcs:parkingPositionPriority
on the point. The property’s value should be a decimal integer, with lower values resulting in a
higher priority for the parking position.

4.1.3. Default recharging location selection

When sending a vehicle to a recharge location, the closest (according to the router) unoccupied
position is selected by default. It is possible to assign fixed positions to vehicles instead, by setting
properties with the following keys on them:

• tcs:preferredRechargeLocation: Expected to be the name of a location. If this location is already
occupied, the closest unoccupied recharging location (if any) is selected instead.

• tcs:assignedRechargeLocation: Expected to be the name of a location. If this location is already
occupied, the vehicle is not sent to any other recharging location. Takes precedence over

31

tcs:preferredRechargeLocation.

4.1.4. Immediate transport order assignment

In addition to the implicit assignment of transport orders according to the flow and rules described
in the previous sections, transport orders can also be assigned explicitly (i.e. immediately).
Immediate assignment of transport orders is supported for transport orders that have their
intended vehicle set. This can be helpful in situations where a transport order and its intended
vehicle are generally in a state where an assignment would be possible, but is prevented by certain
filter criteria in the regular dispatcher flow.

Although the immediate assignment of transport orders bypasses some of the filter criteria in the
regular dispatcher flow, it works only in specific situations. Regarding the transport order’s state:

• The transport order’s state must be DISPATCHABLE.

• The transport order must not be part of an order sequence.

• The transport order’s intended vehicle must be set.

As for the (intended) vehicle’s state:

• The vehicle’s processing state must be IDLE.

• The vehicle’s state must be IDLE or CHARGING.

• The vehicle’s integration level must be TO_BE_UTILIZED.

• The vehicle must be reported at a known position.

• The vehicle must not process an order sequence.

In addition to the state of the respective transport order and its intended vehicle,
the dispatcher may have further implementation-specific reasons to reject an
immediate assignment.

4.2. Default router
The default router finds the cheapest route from one position in the driving course to another one.
(It uses an implementation of Dijkstra’s algorithm to do that.) It takes into account paths that have
been locked, but not positions and/or assumed future behaviour of other vehicles. As a result, it
does not route around slower or stopped vehicles blocking the way.

4.2.1. Cost functions

The cost function used for evaluating the paths in the driving course can be selected via
configuration. (See Default router configuration entries, the relevant configuration entry is
defaultrouter.shortestpath.edgeEvaluators.) The following cost functions/configuration options are
available:

• DISTANCE (default): Routing costs are equal to the paths' lengths.

• TRAVELTIME: Routing costs are computed as the expected time to travel on the paths (in seconds),

32

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

i.e. as path length divided by maximum allowed vehicle speed.

• EXPLICIT_PROPERTIES: Routing costs for a vehicle on a path are taken from path properties with
keys tcs:routingCostForward<GROUP> and tcs:routingCostReverse<GROUP>. The <GROUP> to be used
is the vehicle’s routing group (see Routing groups). As an example, if a vehicle’s routing group is
set to "Example", routing costs for this vehicle would be taken from path properties with keys
tcs:routingCostForwardExample and tcs:routingCostReverseExample. This way, different routing
costs can be assigned to a path, e.g. for different types of vehicles.
Note that, for this cost function to work properly, the values of the routing cost properties
should be decimal integers. An exception to this is the string Infinity, which the property value
can be set to, indicating that the path may not be used by vehicles of the respective routing
group at all.

• HOPS: The routing costs for every path in the model is 1, which results in the route with the least
paths/points being chosen.

• BOUNDING_BOX: Routing costs for a vehicle on a path are determined by comparing the vehicle’s
bounding box with the maximum allowed bounding box at the path’s destination point — see
Bounding box. If the vehicle’s bounding box protrudes beyond a destination point’s bounding
box, the routing costs for the corresponding path are considered infinitely high, indicating that
the path may not be used by the vehicle at all. Otherwise, the routing costs for the
corresponding path are 0. This can be used to prevent vehicles from being routed to/through
points where there is insufficient space available.

Developers can integrate additional custom cost functions using the openTCS API.

More than one cost function can be selected in the configuration by listing them separated by
commas. The costs computed by the respective functions are then added up. For example, when
using "DISTANCE, TRAVELTIME", costs for routes are computed as the sum of the paths' lengths and the
time a vehicle needs to pass it.

Adding distances to durations obviously does not make sense. It is the user’s
responsibility to choose a configuration that is usable and appropriate for the
respective use case.

4.2.2. Routing groups

It is possible to treat vehicles in a plant differently when computing their routes. This may be
desirable if they have different characteristics and actually have different optimal routes through
the driving course. For this to work, the paths in the model or the cost function used need to reflect
this difference. This isn’t done by default — the default router computes routes for all vehicles the
same way unless told otherwise. To let the router know that it should compute routes for a vehicle
separately, set a property with the key tcs:routingGroup to an arbitrary string. (Vehicles that have
the same value set share the same routing table, and the empty string is the default value for all
vehicles.)

4.2.3. Avoiding/Excluding resources when computing routes

When computing a route for a transport order, it is possible to define a set of resources (i.e., points,
paths or locations) that should be avoided by vehicles processing the respective transport order. For

33

this, a property with the key tcs:resourcesToAvoid can be set on a transport order to a comma-
separated list of resource names.

4.3. Default scheduler
The default scheduler implements a simple strategy for traffic management. It does this by allowing
only mutually exclusive use of resources in the plant model (points, paths and locations), as
described below.

4.3.1. Allocating resources

When an allocation of a set of resources for a vehicle is requested, the scheduler performs the
following checks to determine whether the allocation can be granted immediately:

1. Check if the vehicle requesting the resources is not paused.

2. Check if the requested resources are generally available for the vehicle.

3. Check if the requested resources are part of a block with the type SINGLE_VEHICLE_ONLY. If not,
skip this check. If yes, expand the requested resource set to the effective resource set and check
if the expanded resources are available for the vehicle.

4. Check if the requested resources are part of a block with the type SAME_DIRECTION_ONLY. If not,
skip this check. If yes, check if the direction in which the vehicle intends to traverse the block is
the same the block is already being traversed by other vehicles.

5. Check if the areas related to the requested resources are available for the vehicle and not
allocated by other vehicles (provided that the vehicle requesting the resources references an
envelope key and the requested resources define vehicle envelopes with that key).

If all checks succeed, the allocation is made. If any of the checks fail, the allocation is queued for
later.

4.3.2. Freeing resources

Whenever resources are freed (e.g. when a vehicle has finished its movement to the next point and
the vehicle driver reports this to the kernel), the allocations waiting in the queue are checked (in
the order the requests happened). Any allocations that can now be made are made. Allocations that
cannot be made are kept waiting.

4.3.3. Fairness of scheduling

This strategy ensures that resources are used when they are available. It does not, however, strictly
ensure fairness/avoid starvation: Vehicles waiting for allocation of a large resource set may
theoretically wait forever if other vehicles can keep allocating subsets of those resources
continuously. Such situations are likely a hint at problems in the plant model graph’s topology,
which is why this deficiency is considered acceptable for the default implementation.

34

4.4. Default peripheral job dispatcher
When either a peripheral job or a peripheral device becomes available, the peripheral job
dispatcher needs to decide what should happen with which peripheral job and which peripheral
device should do what. To make this decision, the default peripheral job dispatcher takes the
following steps:

1. Peripheral devices that are currently unoccupied but have their reservation token set are
assigned to processable peripheral jobs, if possible.

◦ Criteria for a peripheral device to be taken into account are:

▪ It must not be assigned to a peripheral job.

▪ It must have its reservation token set.

◦ Criteria for a peripheral job to be taken into account are:

▪ It must match the reservation token of a peripheral device.

▪ It must be processable by a peripheral device.

◦ If there are multiple peripheral jobs that meet these criteria, the oldest one according to the
creation time is assigned first.

2. Peripheral devices that could not be assigned to a peripheral job with a matching reservation
token have their reservation released.

◦ The release of reserved peripheral devices is performed via a replaceable strategy. The
default strategy releases peripheral devices according to the following rules:

▪ A peripheral device’s state must be IDLE.

▪ A peripheral device’s processing state must be IDLE.

▪ A peripheral device’s reservation token must be set.

3. Peripheral devices that are currently unoccupied and do not have their reservation token set
are assigned to processable peripheral jobs, if possible.

◦ Criteria for a peripheral device to be taken into account are:

▪ It must not be assigned to a peripheral job.

▪ It must not have its reservation token set.

◦ Criteria for a peripheral job to be taken into account are:

▪ It must be generally available to be processed by a peripheral device.

▪ It must be processable by a peripheral device.

◦ The selection of a peripheral job for a peripheral device is performed via a replaceable
strategy. The default strategy selects peripheral jobs according to the following rules:

▪ The location of a peripheral job’s operation must match the given location.

▪ If there are multiple peripheral jobs that meet these criteria, the oldest one according to
the creation time is selected.

35

4.4.1. Reservation token

As described above, reservation tokens are relevant for the assignment of peripheral jobs to
peripheral devices. This section describes the different types of reservation tokens:

1. Reservation tokens for transport orders.

◦ Optionally, transport orders can be provided with a reservation token.

◦ If a transport order’s reservation token is set, it is used for peripheral jobs that are created
in the context of the transport order (i.e., for peripheral jobs that are created implicitly by
vehicles processing a transport order - see Implicit creation of peripheral jobs).

2. Reservation tokens for peripheral jobs.

◦ Peripheral jobs must always be provided with a reservation token.

◦ For peripheral jobs that are created implicitly by vehicles as they traverse paths that have
peripheral operations defined on them, the reservation token is set to

▪ the reservation token of the transport order the corresponding vehicle is processing

▪ or the name of the vehicle, if the reservation token on the transport order is not set.

3. Reservation tokens for locations that represent peripheral devices.

◦ Initially, the reservation token of a location representing a peripheral device is not set. This
indicates that the peripheral device is generally available to accept a peripheral job with any
reservation token.

◦ Once the peripheral device is assigned a peripheral job, the location’s reservation token is
set to the peripheral job’s reservation token. As a result, the peripheral device is only
available for peripheral jobs with the same reservation token until the peripheral device’s
reservation is released (i.e., until the peripheral device’s reservation token is reset).

36

Chapter 5. Configuring openTCS

5.1. Application language
By default, all openTCS applications with user interfaces display texts in English language. The
applications are prepared for internationalization, though, and can be configured to display texts in
a different language, provided there is a translation for it. The openTCS distribution comes with the
default (English) language and a German translation. Additional translations can be
integrated — how this is done is described in the Developer’s Guide.

For setting the language, each application has a configuration entry that needs to be set to a
language tag for the language to use. (See Kernel Control Center application configuration entries,
Model Editor application configuration entries and Operations Desk application configuration
entries.) Examples for language tags are:

• "en" for English

• "de" for German

• "no" for Norwegian

• "zh" for Chinese

By default, the configuration entries are set to "en", resulting in English texts. Since a German
translation is included, you can switch e.g. the Operations Desk application to German by setting its
locale configuration entry to "de". (Note that the application needs to be restarted for this.)

Configuring an application to use a language for which there is no translation will result in the
default (English) language to be used.

5.2. Kernel configuration
The kernel application reads its configuration data from the following files:

1. config/opentcs-kernel-defaults-baseline.properties,

2. config/opentcs-kernel-defaults-custom.properties and

3. config/opentcs-kernel.properties.

The files are read in this order, and configuration values set in one file can be overridden in any
subsequent one. For users, it is recommended to leave the first two files untouched and set
overriding values and project-specific configuration data in opentcs-kernel.properties only.

5.2.1. Kernel application configuration entries

The kernel application itself can be configured using the following configuration entries:

kernelapp.autoEnableDriversOnStartup

• Type: Boolean

37

• Trigger for changes to be applied: when/after plant model is loaded

• Description: Whether to automatically enable drivers on startup.

kernelapp.autoEnablePeripheralDriversOnStartup

• Type: Boolean

• Trigger for changes to be applied: when/after plant model is loaded

• Description: Whether to automatically enable peripheral drivers on startup.

kernelapp.saveModelOnTerminateModelling

• Type: Boolean

• Trigger for changes to be applied: when/after plant model is loaded

• Description: Whether to implicitly save the model when leaving modelling state.

kernelapp.saveModelOnTerminateOperating

• Type: Boolean

• Trigger for changes to be applied: when/after plant model is loaded

• Description: Whether to implicitly save the model when leaving operating state.

kernelapp.updateRoutingTopologyOnPathLockChange

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to implicitly update the router’s topology when a path is (un)locked.

kernelapp.rerouteOnRoutingTopologyUpdate

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether vehicles should be rerouted immediately on topology changes.

kernelapp.rerouteOnDriveOrderFinished

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether vehicles should be rerouted as soon as they finish a drive order.

kernelapp.vehicleResourceManagementType

• Type: String

• Trigger for changes to be applied: instantly

• Description: The type of how vehicle resources (i.e., paths, points and locations allocated by
vehicles) are managed.
Possible values:
LENGTH_IGNORED: Resources are always released up to (excluding) a vehicle’s
currentposition. This type can be useful when you primarily want to utilize vehicle
envelopes for traffic management.

38

LENGTH_RESPECTED: Only resources that are no longer "covered" by a vehicle (according to
the length of the vehicle and the length of the paths behind it) are released. This is the
"classic" way resources were managed before vehicle envelopes were introduced.

5.2.2. Order pool configuration entries

The kernel’s transport order pool can be configured using the following configuration entries:

orderpool.sweepAge

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: The minimum age of orders or peripheral jobs to remove in a sweep (in ms).

orderpool.sweepInterval

• Type: Long

• Trigger for changes to be applied: when/after plant model is loaded

• Description: The interval between sweeps (in ms).

5.2.3. Default dispatcher configuration entries

The default dispatcher can be configured using the following configuration entries:

defaultdispatcher.orderCandidatePriorities

• Type: Comma-separated list of strings

• Trigger for changes to be applied: on application start

• Description: Keys by which to prioritize transport order candidates for assignment.
Possible values:
BY_AGE: Sort by transport order age, oldest first.
BY_DEADLINE: Sort by transport order deadline, most urgent first.
DEADLINE_AT_RISK_FIRST: Sort orders with deadlines at risk first.
BY_COMPLETE_ROUTING_COSTS: Sort by complete routing costs, lowest first.
BY_INITIAL_ROUTING_COSTS: Sort by routing costs for the first destination.
BY_ORDER_NAME: Sort by transport order name, lexicographically.

defaultdispatcher.orderPriorities

• Type: Comma-separated list of strings

• Trigger for changes to be applied: on application start

• Description: Keys by which to prioritize transport orders for assignment.
Possible values:
BY_AGE: Sort by age, oldest first.
BY_DEADLINE: Sort by deadline, most urgent first.
DEADLINE_AT_RISK_FIRST: Sort orders with deadlines at risk first.
BY_NAME: Sort by name, lexicographically.

39

defaultdispatcher.vehicleCandidatePriorities

• Type: Comma-separated list of strings

• Trigger for changes to be applied: on application start

• Description: Keys by which to prioritize vehicle candidates for assignment.
Possible values:
BY_ENERGY_LEVEL: Sort by energy level of the vehicle, highest first.
IDLE_FIRST: Sort vehicles with state IDLE first.
BY_COMPLETE_ROUTING_COSTS: Sort by complete routing costs, lowest first.
BY_INITIAL_ROUTING_COSTS: Sort by routing costs for the first destination.
BY_VEHICLE_NAME: Sort by vehicle name, lexicographically.

defaultdispatcher.vehiclePriorities

• Type: Comma-separated list of strings

• Trigger for changes to be applied: on application start

• Description: Keys by which to prioritize vehicles for assignment.
Possible values:
BY_ENERGY_LEVEL: Sort by energy level, highest first.
IDLE_FIRST: Sort vehicles with state IDLE first.
BY_NAME: Sort by name, lexicographically.

defaultdispatcher.deadlineAtRiskPeriod

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The time window (in ms) before its deadline in which an order becomes urgent.

defaultdispatcher.assignRedundantOrders

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether orders to the current position with no operation should be assigned.

defaultdispatcher.dismissUnroutableTransportOrders

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether unroutable incoming transport orders should be marked as
UNROUTABLE.

defaultdispatcher.reroutingImpossibleStrategy

• Type: String

• Trigger for changes to be applied: instantly

• Description: The strategy to use when rerouting of a vehicle results in no route at all.
The vehicle then continues to use the previous route in the configured way.
Possible values:
IGNORE_PATH_LOCKS: Stick to the previous route, ignoring path locks.

40

PAUSE_IMMEDIATELY: Do not send further orders to the vehicle; wait for another rerouting
opportunity.
PAUSE_AT_PATH_LOCK: Send further orders to the vehicle only until it reaches a locked path;
then wait for another rerouting opportunity.

defaultdispatcher.parkIdleVehicles

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to automatically create parking orders for idle vehicles.

defaultdispatcher.considerParkingPositionPriorities

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to consider parking position priorities when creating parking orders.

defaultdispatcher.reparkVehiclesToHigherPriorityPositions

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to repark vehicles to parking positions with higher priorities.

defaultdispatcher.rechargeIdleVehicles

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to automatically create recharge orders for idle vehicles.

defaultdispatcher.keepRechargingUntilFullyCharged

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether vehicles must be recharged until they are fully charged.
If false, vehicle must only be recharged until sufficiently charged.

defaultdispatcher.idleVehicleRedispatchingInterval

• Type: Integer

• Trigger for changes to be applied: when/after plant model is loaded

• Description: The interval between redispatching of vehicles.

5.2.4. Default router configuration entries

The default router can be configured using the following configuration entries:

defaultrouter.routeToCurrentPosition

• Type: Boolean

• Trigger for changes to be applied: instantly

41

• Description: Whether to compute a route even if the vehicle is already at the destination.

The shortest path algorithm can be configured using the following configuration entries:

defaultrouter.shortestpath.algorithm

• Type: String

• Trigger for changes to be applied: on application start

• Description: The routing algorithm to be used. Valid values:
'DIJKSTRA': Routes are computed using Dijkstra’s algorithm.
'BELLMAN_FORD': Routes are computed using the Bellman-Ford algorithm.
'FLOYD_WARSHALL': Routes are computed using the Floyd-Warshall algorithm.

defaultrouter.shortestpath.edgeEvaluators

• Type: Comma-separated list of strings

• Trigger for changes to be applied: on application start

• Description: The types of route evaluators/cost factors to be used.
Results of multiple evaluators are added up. Valid values:
'DISTANCE': A route’s cost equals the sum of the lengths of its paths.
'TRAVELTIME': A route’s cost equals the vehicle’s expected travel time.
'EXPLICIT_PROPERTIES': A route’s cost equals the sum of the explicitly given costs extracted
from path properties.
'HOPS': A route’s cost equals the number of paths it consists of.
'BOUNDING_BOX': A route’s cost equals 0 if the vehicle’s bounding box does not protrude
beyond any bounding boxes of points along the route. Otherwise, a route’s cost is considered
infinitely high, resulting in the route to be effectively discarded.

The edge evaluator EXPLICIT_PROPERTIES can be configured using the following configuration
entries:

defaultrouter.edgeevaluator.explicitproperties.defaultValue

• Type: String

• Trigger for changes to be applied: instantly

• Description: The default value used as the routing cost of an edge if no property is set on the
corresponding path.
The value should be an integer. If it is not, the edge is excluded from routing.

5.2.5. Default peripheral job dispatcher configuration entries

The default peripheral job dispatcher can be configured using the following configuration entries:

defaultperipheraljobdispatcher.idlePeripheralRedispatchingInterval

• Type: Integer

• Trigger for changes to be applied: when/after plant model is loaded

• Description: The interval between redispatching of peripheral devices.

42

5.2.6. Admin web API configuration entries

The kernel’s admin web API can be configured using the following configuration entries:

adminwebapi.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable the admin interface.

adminwebapi.bindAddress

• Type: IP address

• Trigger for changes to be applied: on application start

• Description: Address to which to bind the HTTP server, e.g. 0.0.0.0. (Default: 127.0.0.1.)

adminwebapi.bindPort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: Port to which to bind the HTTP server.

5.2.7. Service web API configuration entries

The kernel’s service web API can be configured using the following configuration entries:

servicewebapi.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable the interface.

servicewebapi.bindAddress

• Type: IP address

• Trigger for changes to be applied: on application start

• Description: Address to which to bind the HTTP server, e.g. 0.0.0.0 or 127.0.0.1.

servicewebapi.bindPort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: Port to which to bind the HTTP server.

servicewebapi.accessKey

• Type: String

• Trigger for changes to be applied: instantly

• Description: Key allowing access to the API.

43

servicewebapi.statusEventsCapacity

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: Maximum number of status events to be kept.

servicewebapi.useSsl

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to use SSL to encrypt connections.

5.2.8. RMI kernel interface configuration entries

The kernel’s RMI interface can be configured using the following configuration entries:

rmikernelinterface.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable the interface.

rmikernelinterface.registryPort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the RMI.

rmikernelinterface.remoteDispatcherServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote dispatcher service.

rmikernelinterface.remoteQueryServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote query service.

rmikernelinterface.useSsl

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to use SSL to encrypt connections.

rmikernelinterface.remotePeripheralServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

44

• Description: The TCP port of the remote peripheral service.

rmikernelinterface.remotePeripheralJobServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote peripheral job service.

rmikernelinterface.remoteKernelServicePortalPort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote kernel service portal.

rmikernelinterface.remotePlantModelServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote plant model service.

rmikernelinterface.remoteTransportOrderServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote transport order service.

rmikernelinterface.remoteVehicleServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote vehicle service.

rmikernelinterface.remoteNotificationServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote notification service.

rmikernelinterface.remoteSchedulerServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote scheduler service.

rmikernelinterface.remoteRouterServicePort

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The TCP port of the remote router service.

45

rmikernelinterface.clientSweepInterval

• Type: Long

• Trigger for changes to be applied: on application start

• Description: The interval for cleaning out inactive clients (in ms).

5.2.9. SSL server-side encryption configuration entries

The kernel’s SSL encryption can be configured using the following configuration entries:

ssl.keystoreFile

• Type: String

• Trigger for changes to be applied: on application start

• Description: The file url of the keystore.

ssl.keystorePassword

• Type: String

• Trigger for changes to be applied: on application start

• Description: The password for the keystore.

ssl.truststoreFile

• Type: String

• Trigger for changes to be applied: on application start

• Description: The file url of the truststore.

ssl.truststorePassword

• Type: String

• Trigger for changes to be applied: on application start

• Description: The password for the truststore.

5.2.10. Virtual vehicle configuration entries

The virtual vehicle (loopback communication adapter) can be configured using the following
configuration entries:

virtualvehicle.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable to register/enable the loopback driver.

virtualvehicle.commandQueueCapacity

• Type: Integer

• Trigger for changes to be applied: when/after plant model is loaded

• Description: The adapter’s command queue capacity.

46

virtualvehicle.rechargeOperation

• Type: String

• Trigger for changes to be applied: when/after plant model is loaded

• Description: The string to be treated as a recharge operation.

virtualvehicle.rechargePercentagePerSecond

• Type: Double

• Trigger for changes to be applied: instantly

• Description: The rate at which the vehicle recharges in percent per second.

virtualvehicle.simulationTimeFactor

• Type: Double

• Trigger for changes to be applied: instantly

• Description: The simulation time factor.
1.0 is real time, greater values speed up simulation.

virtualvehicle.vehicleLengthLoaded

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: The virtual vehicle’s length in mm when it’s loaded.

virtualvehicle.vehicleLengthUnloaded

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: The virtual vehicle’s length in mm when it’s unloaded.

5.2.11. Virtual peripheral configuration entries

The virtual peripheral (peripheral loopback communication adapter) can be configured using the
following configuration entries:

virtualperipheral.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable to register/enable the peripheral loopback driver.

5.2.12. Watchdog configuration entries

The watchdog can be configured using the following configuration entries:

watchdog.blockConsistencyCheckInterval

• Type: Integer

• Trigger for changes to be applied: on application start

47

• Description: The interval (in milliseconds) in which to check for block consistency.

watchdog.strandedVehicleCheckInterval

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The interval (in milliseconds) in which to check for stranded vehicles.

watchdog.strandedVehicleDurationThreshold

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: The duration (in milliseconds) that a vehicle must be in a stranded state to
actually be considered stranded.

5.3. Kernel Control Center configuration
The kernel control center application reads its configuration data from the following files:

1. config/opentcs-kernelcontrolcenter-defaults-baseline.properties,

2. config/opentcs-kernelcontrolcenter-defaults-custom.properties and

3. config/opentcs-kernelcontrolcenter.properties.

The files are read in this order, and configuration values set in one file can be overridden in any
subsequent one. For users, it is recommended to leave the first two files untouched and set
overriding values and project-specific configuration data in opentcs-
kernelcontrolcenter.properties only.

5.3.1. Kernel Control Center application configuration entries

The kernel control center application itself can be configured using the following configuration
entries:

kernelcontrolcenter.locale

• Type: String

• Trigger for changes to be applied: on application start

• Description: The kernel control center application’s locale, as a BCP 47 language tag.
Examples: 'en', 'de', 'zh'

kernelcontrolcenter.connectionBookmarks

• Type: Comma-separated list of <description>\|<hostname>\|<port>

• Trigger for changes to be applied: on application start

• Description: Kernel connection bookmarks to be used.

kernelcontrolcenter.connectAutomaticallyOnStartup

• Type: Boolean

48

• Trigger for changes to be applied: on application start

• Description: Whether to automatically connect to the kernel on startup.
If 'true', the first connection bookmark will be used for the initial connection attempt.
If 'false', a dialog will be shown to enter connection parameters.

kernelcontrolcenter.loggingAreaCapacity

• Type: Integer

• Trigger for changes to be applied: instantly

• Description: The maximum number of characters in the logging text area.

kernelcontrolcenter.enablePeripheralsPanel

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to enable and show the panel for peripheral drivers.

5.3.2. SSL KCC-side application configuration entries

The kernel control center application’s SSL connections can be configured using the following
configuration entries:

ssl.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to use SSL to encrypt RMI connections to the kernel.

ssl.truststoreFile

• Type: String

• Trigger for changes to be applied: on application start

• Description: The path to the SSL truststore.

ssl.truststorePassword

• Type: String

• Trigger for changes to be applied: on application start

• Description: The password for the SSL truststore.

5.4. Model Editor configuration
The model editor application reads its configuration data from the following files:

1. config/opentcs-modeleditor-defaults-baseline.properties,

2. config/opentcs-modeleditor-defaults-custom.properties,

3. config/opentcs-modeleditor.properties.

49

The files are read in this order, and configuration values set in one file can be overridden in any
subsequent one. For users, it is recommended to leave the first two files untouched and set
overriding values and project-specific configuration data in opentcs-modeleditor.properties only.

5.4.1. Model Editor application configuration entries

The model editor application itself can be configured using the following configuration entries:

modeleditor.locale

• Type: String

• Trigger for changes to be applied: on application start

• Description: The plant overview application’s locale, as a BCP 47 language tag.
Examples: 'en', 'de', 'zh'

modeleditor.connectionBookmarks

• Type: Comma-separated list of <description>\|<hostname>\|<port>

• Trigger for changes to be applied: on application start

• Description: Kernel connection bookmarks to be used.

modeleditor.useBookmarksWhenConnecting

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to use the configured bookmarks when connecting to the kernel.
If 'true', the first connection bookmark will be used for the connection attempt.
If 'false', a dialog will be shown to enter connection parameters.

modeleditor.locationThemeClass

• Type: Class name

• Trigger for changes to be applied: on application start

• Description: The name of the class to be used for the location theme.
Must be a class extending org.opentcs.components.plantoverview.LocationTheme

5.4.2. SSL model editor-side application configuration entries

The model editor application’s SSL connections can be configured using the following configuration
entries:

ssl.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to use SSL to encrypt RMI connections to the kernel.

ssl.truststoreFile

• Type: String

50

• Trigger for changes to be applied: on application start

• Description: The path to the SSL truststore.

ssl.truststorePassword

• Type: String

• Trigger for changes to be applied: on application start

• Description: The password for the SSL truststore.

5.4.3. Model Editor element naming scheme configuration entries

The model editor application’s element naming schemes can be configured using the following
configuration entries:

elementnamingscheme.pointPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new point element.

elementnamingscheme.pointNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new point element.

elementnamingscheme.pathPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new path element.

elementnamingscheme.pathNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new path element.

elementnamingscheme.locationTypePrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new location type element.

elementnamingscheme.locationTypeNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new location type element.

51

elementnamingscheme.locationPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new location element.

elementnamingscheme.locationNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new location element.

elementnamingscheme.linkPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new link element.

elementnamingscheme.linkNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new link element.

elementnamingscheme.blockPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new block.

elementnamingscheme.blockNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new block.

elementnamingscheme.layoutPrefix

• Type: String

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new layout element.

elementnamingscheme.layoutNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new layout element.

elementnamingscheme.vehiclePrefix

• Type: String

52

• Trigger for changes to be applied: on application start

• Description: The default prefix for a new vehicle.

elementnamingscheme.vehicleNumberPattern

• Type: String

• Trigger for changes to be applied: on application start

• Description: The numbering pattern for a new vehicle.

5.5. Operations Desk configuration
The operations desk application reads its configuration data from the following files:

1. config/opentcs-operationsdesk-defaults-baseline.properties,

2. config/opentcs-operationsdesk-defaults-custom.properties,

3. config/opentcs-operationsdesk.properties.

The files are read in this order, and configuration values set in one file can be overridden in any
subsequent one. For users, it is recommended to leave the first two files untouched and set
overriding values and project-specific configuration data in opentcs-operationsdesk.properties
only.

5.5.1. Operations Desk application configuration entries

The operations desk application itself can be configured using the following configuration entries:

operationsdesk.locale

• Type: String

• Trigger for changes to be applied: on application start

• Description: The plant overview application’s locale, as a BCP 47 language tag.
Examples: 'en', 'de', 'zh'

operationsdesk.connectionBookmarks

• Type: Comma-separated list of <description>\|<hostname>\|<port>

• Trigger for changes to be applied: on application start

• Description: Kernel connection bookmarks to be used.

operationsdesk.useBookmarksWhenConnecting

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether to use the configured bookmarks when connecting to the kernel.
If 'true', the first connection bookmark will be used for the connection attempt.
If 'false', a dialog will be shown to enter connection parameters.

53

operationsdesk.frameMaximized

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether the GUI window should be maximized on startup.

operationsdesk.frameBoundsWidth

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The GUI window’s configured width in pixels.

operationsdesk.frameBoundsHeight

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The GUI window’s configured height in pixels.

operationsdesk.frameBoundsX

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The GUI window’s configured x-coordinate on screen in pixels.

operationsdesk.frameBoundsY

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The GUI window’s configured y-coordinate on screen in pixels.

operationsdesk.locationThemeClass

• Type: Class name

• Trigger for changes to be applied: on application start

• Description: The name of the class to be used for the location theme.
Must be a class extending org.opentcs.components.plantoverview.LocationTheme

operationsdesk.vehicleThemeClass

• Type: Class name

• Trigger for changes to be applied: on application start

• Description: The name of the class to be used for the vehicle theme.
Must be a class extending org.opentcs.components.plantoverview.VehicleTheme

operationsdesk.ignoreVehiclePrecisePosition

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether reported precise positions should be ignored displaying vehicles.

54

operationsdesk.ignoreVehicleOrientationAngle

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether reported orientation angles should be ignored displaying vehicles.

operationsdesk.userNotificationDisplayCount

• Type: Integer

• Trigger for changes to be applied: on application start

• Description: The maximum number of most recent user notifications to be displayed.

operationsdesk.allowForcedWithdrawal

• Type: Boolean

• Trigger for changes to be applied: instantly

• Description: Whether the forced withdrawal context menu entry should be enabled.

5.5.2. SSL operation desk-side application configuration entries

The operation desk application’s SSL connections can be configured using the following
configuration entries:

ssl.enable

• Type: Boolean

• Trigger for changes to be applied: on application start

• Description: Whether to use SSL to encrypt RMI connections to the kernel.

ssl.truststoreFile

• Type: String

• Trigger for changes to be applied: on application start

• Description: The path to the SSL truststore.

ssl.truststorePassword

• Type: String

• Trigger for changes to be applied: on application start

• Description: The password for the SSL truststore.

55

Chapter 6. Advanced usage examples

6.1. Configuring automatic startup
1. To automatically enable vehicle drivers on startup, set the kernel application’s configuration

parameter kernelapp.autoEnableDriversOnStartup to true.

6.2. Automatically selecting a specific vehicle driver
on startup
Automatic attachment of vehicle drivers by default works as follows: The kernel asks every
available vehicle driver if it can attach to a given vehicle and selects the first one that can. It asks
the loopback driver last, as that one is always available and can attach to any vehicle, but should
not prevent actual vehicle drivers to be attached. As a result, if there is only one driver for your
vehicle(s), you usually do not have to do anything for it to be selected.

In some less common cases, you may have multiple vehicle drivers registered with the kernel that
can all attach to the vehicles in your plant model. To automatically select a specific driver in such
cases, set a property with the key tcs:preferredAdapterClass on the vehicles, with its value being the
name of the Java class implementing the driver’s adapter factory. (If you do not know this class
name, ask the developer who provided the vehicle driver to you for it.)

6.3. Configuring a virtual vehicle’s characteristics
The loopback driver supports some (limited) configuration of the virtual vehicle’s characteristics
via properties set in the plant model. You can set the properties the following way:

1. Start the Model Editor application and create or load a plant model.

2. In the Model Editor application’s tree view of the plant model, select a vehicle.

3. In the table showing the vehicle’s properties, click into the value field labelled
[ Miscellaneous ]. In the dialog shown, add a property key and value according to the list below.

4. Save the model and upload it to the kernel as described in Saving the plant model.

The loopback driver interprets properties with the following keys:

• loopback:initialPosition: Set the property value to the name of a point in the plant model.
When started, the loopback adapter will set the virtual vehicle’s current position to this.
(Default value: not set)

• loopback:acceleration: Set the property value to a positive integer representing an acceleration
in mm/s2. The loopback adapter will simulate vehicle movement with the given acceleration.
(Default value: 500)

• loopback:deceleration: Set the property value to a negative integer representing an acceleration
in mm/s2. The loopback adapter will simulate vehicle movement with the given deceleration.
(Default value: -500)

56

• loopback:loadOperation: Set the property value to a string representing the virtual vehicle’s load
operation. When the virtual vehicle executes this operation, the loopback adapter will set the its
load handling device’s state to full. (Default value: not set)

• loopback:unloadOperation: Set the property value to a string representing the virtual vehicle’s
unload operation. When the virtual vehicle executes this operation, the loopback adapter will
set its load handling device’s state to empty. (Default value: not set)

• loopback:operatingTime: Set the property value to a positive integer representing the virtual
vehicle’s operating time in milliseconds. When the virtual vehicle executes an operation, the
loopback adapter will simulate an operating time accordingly. (Default value: 5000)

6.4. Transforming coordinates sent to / received from
vehicles
It is possible that not all vehicles managed by an openTCS kernel instance are using the same
coordinate system as the one in the plant model. To ease integration with such situations, the kernel
can transform coordinates when they are sent to / received from vehicles.

Out of the box, the kernel can apply offsets to coordinate and orientation angle values. To make use
of this, do the following:

1. On a vehicle element in the plant model, set a property with key tcs:vehicleDataTransformer to
value OFFSET_TRANSFORMER.

2. Set a property with key tcs:offsetTransformer.x to an offset value, e.g. 10. The value is expected
to be an integer in millimeters and may also be negative.

3. Also set properties with keys tcs:offsetTransformer.y and tcs:offsetTransformer.z for offsets on
the other two axes.

4. Also set a property with key tcs:offsetTransformer.orientation for an orientation angle offset.
The value is expected to be a floating-point value in degrees and may also be negative.

With this configuration, the given offset values will be added to coordinate and orientation angle
values that are sent to the vehicle, and will be subtracted from coordinate and orientation angle
values that are received by the vehicle.

This mechanism is extensible: Developers can integrate their own transformation
components with the openTCS kernel to apply custom, complex transformations to
data sent to / received from vehicles.

6.5. Running kernel and its clients on separate systems
The kernel and its clients (the Model Editor, Operations Desk and Kernel Control Center
applications) communicate via the Java Remote Method Invocation (RMI) mechanism. This makes it
possible to run the kernel and the clients on separate hosts, as long as a usable network connection
between these systems exists.

By default, the Model Editor, the Operations Desk and the Kernel Control Center are configured to

57

connect to a kernel running on the same host. To connect them to a kernel running on a remote
host, e.g. on a host named myhost.example.com, do the following:

• For the Model Editor, set the configuration parameter modeleditor.connectionBookmarks to
SomeDescription|myhost.example.com|1099.

• For the Operations Desk, set the configuration parameter operationsdesk.connectionBookmarks to
SomeDescription|myhost.example.com|1099.

• For the Kernel Control Center, set the configuration parameter
kernelcontrolcenter.connectionBookmarks to SomeDescription|myhost.example.com|1099.

The configuration value can be a comma-separated list of <description>|<host>|<port> sets. The
applications will automatically try to connect to the first host in the list. If that fails, they will show
a dialog to select an entry or enter a different address to connect to.

6.6. Encrypting communication with the kernel
By default, client applications and the kernel communicate via plain Java Remote Method
Invocation (RMI) calls or HTTP requests. These communication channels can optionally be
encrypted via SSL/TLS. To achieve this, do the following:

1. Generate a keystore/truststore pair (keystore.p12 and truststore.p12).

a. You can use the Unix shell script or Windows batch file (generateKeystores.sh/.bat)
provided in the kernel application’s directory for this.

b. The scripts use the key and certificate management tool 'keytool' that is included in both the
Java JDK and JRE. If 'keytool' is not contained in the system’s Path environment variable the
KEYTOOL_PATH variable in the respective script needs to be modified to point to the location
where the 'keytool' is located.

c. By default, the generated files are placed in the kernel application’s config directory.

2. Copy the truststore.p12 file to the client application’s (Model Editor, Operations Desk or Kernel
Control Center) config directory. Leave the file in the kernel application’s config directory as
well.

3. In the kernel’s configuration file, enable SSL for the RMI interface and/or for the web service
interface. (See RMI kernel interface configuration entries and/or Service web API configuration
entries for a description of the configuration entries.)

4. If you enabled SSL for the RMI interface, you need to enable it in the Model Editor’s, Operations
Desk’s and the Kernel Control Center’s configuration files, too. (See SSL model editor-side
application configuration entries, SSL operation desk-side application configuration entries and
SSL KCC-side application configuration entries for a description of the configuration entries.)

6.7. Configuring automatic parking and recharging
By default, idle vehicles remain where they are after processing their last transport order. You can
change this in the kernel’s configuration file:

• To order vehicles to charging locations automatically, set the configuration parameter

58

defaultdispatcher.rechargeIdleVehicles to true. The default dispatcher will then look for
locations at which the idle vehicle’s recharge operation is possible and create orders to send it
to such a location (if unoccupied). (Note that the string used for the operation is driver-specific.)

• To order vehicles to parking positions automatically, set the configuration parameter
defaultdispatcher.parkIdleVehicles to true. The default dispatcher will then look for
unoccupied parking positions and create orders to send the idle vehicle there.

6.8. Configuring order pool cleanup
By default, openTCS checks every minute for finished or failed transport orders and peripheral jobs
that are older than 24 hours. These orders and jobs are removed from the pool. To customize this
behaviour, do the following:

1. Set the configuration entry orderpool.sweepInterval to a value according to your needs. The
default value is 60.000 (milliseconds, corresponding to an interval of one minute).

2. Set the configuration entry orderpool.sweepAge to a maximum age of finished orders and jobs
according to your needs. The default value is 86.400.000 (milliseconds, corresponding to 24
hours that a finished order or job should be kept in the pool).

6.9. Using model element properties for project-
specific data
Every object in the plant model - i.e. points, paths, locations, location types and vehicles - can be
augmented with arbitrary project-specific data that can be used, e.g. by vehicle drivers, custom
client applications, etc.. Possible uses for such data could be informing the vehicle driver about
additional actions to be performed by a vehicle when moving along a path in the model (e.g.
flashing direction indicators, displaying a text string on a display, giving an acoustic warning) or
controlling the behaviour of peripheral systems (e.g. automatic fire protection gates).

The data can be stored in properties, i.e. key-value pairs attached to the model elements, where
both the key and the corresponding value are text strings. These key-value pairs can be created and
edited using the Model Editor application: Simply select the model element you want to add a key-
value pair to and click into the value field labelled [ Miscellaneous ] in the properties table. In the
dialog shown, set the key-value pairs you need to store your project-specific information.

For your project-specific key-value pairs, you may specify arbitrary keys. openTCS
itself will not make any use of this data; it will merely store it and provide it for
custom vehicle drivers and/or other extensions. You should, however, not use any
keys starting with "tcs:" for storing project-specific data. Any keys with this prefix
are reserved for official openTCS features, and using them could lead to collisions.

59

	openTCS: User’s Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Purpose of the software
	1.2. System requirements
	1.3. Licensing
	1.4. Further documentation
	1.5. Support

	Chapter 2. System overview
	2.1. System components and structure
	2.2. Plant model elements
	2.2.1. Point
	2.2.2. Path
	2.2.3. Location
	2.2.4. Location type
	2.2.5. Vehicle
	2.2.6. Block
	2.2.7. Layer
	2.2.8. Layer group

	2.3. Plant operation elements
	2.3.1. Transport order
	2.3.2. Order sequence
	2.3.3. Peripheral job

	2.4. Common element attributes
	2.4.1. Unique name
	2.4.2. Generic properties

	Chapter 3. Operating the system
	3.1. Constructing a new plant model
	3.1.1. Starting the Model Editor
	3.1.2. Adding elements to the plant model
	3.1.3. Working with vehicle envelopes
	3.1.4. Working with layers and layer groups
	3.1.5. Saving the plant model

	3.2. Operating the plant
	3.2.1. Starting components for system operation
	3.2.2. Configuring vehicle drivers
	3.2.3. Creating a transport order
	3.2.4. Withdrawing transport orders using the Operations Desk application
	3.2.5. Continuous creation of transport orders
	3.2.6. Configuring peripheral device drivers
	3.2.7. Creating a peripheral job
	3.2.8. Withdrawing peripheral jobs using the Operations Desk application
	3.2.9. Removing a vehicle from a running system
	3.2.10. Pausing and resuming the operation of vehicles

	Chapter 4. Default strategies
	4.1. Default dispatcher
	4.1.1. Default parking position selection
	4.1.2. Optional parking position priorities
	4.1.3. Default recharging location selection
	4.1.4. Immediate transport order assignment

	4.2. Default router
	4.2.1. Cost functions
	4.2.2. Routing groups
	4.2.3. Avoiding/Excluding resources when computing routes

	4.3. Default scheduler
	4.3.1. Allocating resources
	4.3.2. Freeing resources
	4.3.3. Fairness of scheduling

	4.4. Default peripheral job dispatcher
	4.4.1. Reservation token

	Chapter 5. Configuring openTCS
	5.1. Application language
	5.2. Kernel configuration
	5.2.1. Kernel application configuration entries
	5.2.2. Order pool configuration entries
	5.2.3. Default dispatcher configuration entries
	5.2.4. Default router configuration entries
	5.2.5. Default peripheral job dispatcher configuration entries
	5.2.6. Admin web API configuration entries
	5.2.7. Service web API configuration entries
	5.2.8. RMI kernel interface configuration entries
	5.2.9. SSL server-side encryption configuration entries
	5.2.10. Virtual vehicle configuration entries
	5.2.11. Virtual peripheral configuration entries
	5.2.12. Watchdog configuration entries

	5.3. Kernel Control Center configuration
	5.3.1. Kernel Control Center application configuration entries
	5.3.2. SSL KCC-side application configuration entries

	5.4. Model Editor configuration
	5.4.1. Model Editor application configuration entries
	5.4.2. SSL model editor-side application configuration entries
	5.4.3. Model Editor element naming scheme configuration entries

	5.5. Operations Desk configuration
	5.5.1. Operations Desk application configuration entries
	5.5.2. SSL operation desk-side application configuration entries

	Chapter 6. Advanced usage examples
	6.1. Configuring automatic startup
	6.2. Automatically selecting a specific vehicle driver on startup
	6.3. Configuring a virtual vehicle’s characteristics
	6.4. Transforming coordinates sent to / received from vehicles
	6.5. Running kernel and its clients on separate systems
	6.6. Encrypting communication with the kernel
	6.7. Configuring automatic parking and recharging
	6.8. Configuring order pool cleanup
	6.9. Using model element properties for project-specific data

