
openTCS
Developer’s Guide

The openTCS developers

openTCS 4.20.0

Table of Contents
1. Development with openTCS in general . 1

1.1. System requirements . 1

1.2. Available artifacts and API compatibility . 1

1.3. Third-party dependencies . 2

1.4. Modularity and extensibility . 3

1.5. Logging . 3

1.6. Working with the openTCS source code . 3

1.7. openTCS kernel APIs . 4

2. The kernel’s Java API . 5

2.1. Acquiring service objects . 5

2.2. Working with transport orders . 6

2.2.1. A transport order’s life cycle . 6

2.2.2. Structure and processing of transport orders . 8

2.2.3. How to create a new transport order . 9

2.2.4. How to create a transport order that sends a vehicle to a point instead of a location . . . 10

2.2.5. Using order sequences . 11

2.2.6. How to withdraw a transport order that is currently being processed 13

2.2.7. How to withdraw a transport order via a reference on the vehicle processing it 13

2.3. Using the event bus . 13

3. TCP/IP-based interfaces to other systems . 15

3.1. Creating orders via TCP/IP . 15

3.1.1. XML telegrams for creating orders . 16

3.1.2. XML telegrams referencing order batches . 16

3.1.3. Receipts for created orders . 17

3.1.4. Receipts for order batches . 17

3.2. Status messages via TCP/IP . 18

3.3. XML Schema definitions for telegrams and scripts . 19

4. Generating an integration project . 20

5. Customizing and extending the kernel application. 21

5.1. Guice modules. 21

5.2. Replacing default kernel components . 21

5.3. Developing vehicle drivers . 22

5.3.1. Classes and interfaces for the kernel . 22

5.3.2. Classes and interfaces for the control center . 23

5.3.3. Steps to create a new vehicle driver . 24

5.3.4. Registering a vehicle driver with the kernel . 24

5.4. Sending messages to communication adapters . 25

5.5. Acquiring data from communication adapters . 25

5.6. Executing code in kernel context . 26

6. Customizing and extending the control center application . 28

6.1. Guice modules. 28

6.2. Registering driver panels with the control center . 28

7. Customizing and extending the plant overview application . 30

7.1. Guice modules. 30

7.2. How to create a plugin panel for the plant overview client . 30

7.3. How to create a location/vehicle theme for openTCS . 31

8. Supplementing configuration sources . 32

9. Translating the user interfaces . 33

9.1. Extracting default language files . 33

9.2. Creating a translation . 34

9.3. Integrating a translation . 34

9.4. Updating a translation . 35

Chapter 1. Development with openTCS in
general

1.1. System requirements
The openTCS source code is written in Java. To compile it, you need a Java Development Kit (JDK)
1.8. To run the resulting binaries, you need a Java Runtime Environment (JRE) 1.8. All other
required libraries are included in the openTCS distribution or will be downloaded automatically
when building it from source code.

1.2. Available artifacts and API compatibility
The openTCS project publishes artifacts for releases via JCenter, so you can easily integrate them
with build systems such as Gradle or Maven. In Gradle build scripts, for example, use something
like the following to integrate an openTCS library:

repositories {
 jcenter()
}

dependencies {
 compile group: 'org.opentcs', name: '${ARTIFACT}', version: '4.20.0'
}

Set the version number of the openTCS release you actually want to work with, and select the
appropriate ${ARTIFACT} name from the following table:

Table 1. Artifacts published by the openTCS project

Artifact name API compatibility
between minor
releases

Content

opentcs-api-base Yes The base API for clients and extensions. This is
what most developers probably want to use.

opentcs-api-injection Yes API interfaces and classes used for dependency
injection within the kernel and plant overview
applications. This is required in integration
projects customizing these applications, e.g.
adding components like vehicle driver
implementations.

opentcs-common No A collection of utility classes used by openTCS
components.

opentcs-impl-
configuration-cfg4j

No An implementation of the base API’s
configuration interfaces based on cfg4j.

1

https://bintray.com/bintray/jcenter

Artifact name API compatibility
between minor
releases

Content

opentcs-kernel-
extension-http-
services

No A kernel extension providing the web API
implementation.

opentcs-kernel-
extension-rmi-services

No A kernel extension providing the RMI interface
implementation.

opentcs-kernel-
extension-statistics

No A kernel extension providing the statistics
collection implementation.

opentcs-kernel-
extension-tcp-host-
interface

No A kernel extension providing the (deprecated)
TCP/IP host interface implementation.

opentcs-plantoverview-
panel-loadgenerator

No The load generator panel implementation for
the plant overview.

opentcs-plantoverview-
panel-
resourceallocation

No The resource allocation panel implemenation
for the plant overview.

opentcs-plantoverview-
panel-statistics

No The statistics panel implementation for the plant
overview.

opentcs-plantoverview-
themes-default

No The default themes implementation for the plant
overview.

opentcs-commadapter-
loopback

No A very basic vehicle driver simulating a virtual
vehicle.

opentcs-strategies-
default

No The default implementations of strategies that
are used by the kernel application.

opentcs-kernel No The kernel application.

opentcs-
kernelcontrolcenter

No The kernel control center application.

opentcs-plantoverview No The plant overview application.

Note that only the basic API libraries provide a documented API that the openTCS developers try to
keep compatible between minor releases. (For these libraries, the rules of semantic versioning are
applied.) All other artifacts' contents can and will change regardless of any compatibility concerns,
so if you use these and switch to a different version of openTCS, you may have to adjust and
recompile your code.

1.3. Third-party dependencies
The kernel and the client applications depend on the following external frameworks and libraries:

• SLF4J (https://www.slf4j.org/): A simple logging facade to keep the actual logging
implementation replaceable.

• Google Guice (https://github.com/google/guice): A light-weight dependency injection framework.

2

https://semver.org/
https://www.slf4j.org/
https://github.com/google/guice

• Cfg4j (http://www.cfg4j.org/): A configuration library supporting binding interfaces.

• Google Guava (https://github.com/google/guava): A collection of small helper classes and
methods.

The kernel application also depends on the following libraries:

• JGraphT (http://jgrapht.org/): A library for working with graphs and using algorithms on them.

• Spark (http://sparkjava.com/): A framework for creating web applications.

• Jackson (https://github.com/FasterXML/jackson): Provides JSON bindings for Java objects.

• JDOM (http://www.jdom.org/): A library for reading and writing XML data.

The plant overview application has the following additional dependencies:

• JHotDraw (http://www.jhotdraw.org/): A framework for drawing graph structures (like driving
course models).

• Docking Frames (http://www.docking-frames.org/): A framework for docking and undocking of
GUI panels

For automatic tests, the following dependencies are used:

• JUnit (https://junit.org/): A simple unit-testing framework.

• Mockito (http://mockito.org/): A framework for creating mock objects.

• Hamcrest (http://hamcrest.org/): A framework for assertion matchers that can be used in tests.

The artifacts for these dependencies are downloaded automatically when building the applications.

1.4. Modularity and extensibility
The openTCS project heavily relies on Guice for dependency injection and wiring of components as
well as for providing plugin-like extension mechanisms. In the injection API, relevant classes can be
found in the package org.opentcs.customizations. For examples, see Customizing and extending the
kernel application, Customizing and extending the plant overview application and Customizing and
extending the control center application.

1.5. Logging
The code in the official openTCS distribution uses SLF4J for logging. Thus, the actual logging
implementation is easily interchangeable by replacing the SLF4J binding in the respective
application’s classpath. The kernel and plant overview client applications come with SLF4J’s
bindings for java.util.logging by default. For more information on how to change the actual
logging implementation, e.g. to use log4j, please see the SLF4J documentation.

1.6. Working with the openTCS source code
The openTCS project itself uses Gradle as its build management tool. To build openTCS from source
code, just run gradlew build from the source distribution’s main directory. For details on how to

3

http://www.cfg4j.org/
https://github.com/google/guava
http://jgrapht.org/
http://sparkjava.com/
https://github.com/FasterXML/jackson
http://www.jdom.org/
http://www.jhotdraw.org/
http://www.docking-frames.org/
https://junit.org/
http://mockito.org/
http://hamcrest.org/
https://github.com/google/guice
http://www.slf4j.org/
https://gradle.org/

work with Gradle, please see its documentation.

These are the main Gradle tasks of the root project you need to know to get started:

• build: Compiles the source code of all subprojects.

• release: Builds and packages all system components to a distribution in build/.

• clean: Cleans up everything produced by the other tasks.

To work with the source code in your IDE, see the IDE’s documentation for Gradle integration.
There is no general recommendation for any specific IDE. Note, however, that the openTCS source
code contains GUI components that have been created with the NetBeans GUI builder. If you want
to edit these, you may want to use the NetBeans IDE.

In case you use NetBeans, install the Gradle Support plugin from the NetBeans plugin portal. You
should then be able to open the source distribution’s root directory as a Gradle project and compile
and run the components from within NetBeans.

1.7. openTCS kernel APIs
openTCS provides the following APIs to interact with the kernel:

• The kernel’s Java API for both extending the kernel application as well as interfacing with it via
RMI. See The kernel’s Java API for details.

• A web API for interfacing with the kernel via HTTP calls. See the separate interface
documentation that is part of the openTCS distribution for details.

• A legacy TCP/IP-based interface for creating transport orders and fetching status information.
See TCP/IP-based interfaces to other systems for details.
Note that this interface is deprecated in favour of the web API and will be removed with the
release of openTCS 5.0.

4

https://docs.gradle.org/
http://plugins.netbeans.org/plugin/44510/gradle-support

Chapter 2. The kernel’s Java API
The interfaces and classes required to use the kernel API are part of the opentcs-api-base JAR file,
so you should add that to your classpath/declare a dependency on it. (See Available artifacts and
API compatibility.) The basic data structures for plant model components and transport orders you
will encounter often are:

Figure 1. Basic data structures

The service interfaces that are most often interacted with to fetch and manipulate such objects are:

Figure 2. Service interfaces

2.1. Acquiring service objects
To use the services in code running inside the kernel JVM, e.g. a vehicle driver, simply request an
instance of e.g. PlantModelService to be provided via dependency injection. You may also work with
an instance of InternalPlantModelService here, which provides additional methods available only to
kernel application components.

To access the services from another JVM, e.g. in a client that is supposed to create transport orders
or to receive status updates for transport orders or vehicles, you need to connect to them via
Remote Method Invocation (RMI). The easiest way to do this is by creating an instance of the
KernelServicePortalBuilder class and letting it build a KernelServicePortal instance for you. (For
now, there isn’t much support for user management, so it is recommended to ignore the methods
that require user credentials.) After creating the KernelServicePortal instance, you can use it to get

5

service instances and fetch kernel events from it. See also the class documentation for
KernelServicePortalBuilder in the base API’s JavaDoc documentation.

KernelServicePortal servicePortal = new KernelServicePortalBuilder().build();

// Connect and log in with a kernel somewhere.
servicePortal.login("someHost", 1099);

// Get a reference to the plant model service...
PlantModelService plantModelService = servicePortal.getPlantModelService();
// ...and find out the name of the currently loaded model.
String modelName = plantModelService.getLoadedModelName();

// Poll events, waiting up to a second if none are currently there.
// This should be done periodically, and probably in a separate thread.
List<Object> events = servicePortal.fetchEvents(1000);

2.2. Working with transport orders
A transport order, represented by an instance of the class TransportOrder, describes a process to be
executed by a vehicle. Usually, this process is an actual transport of goods from one location to
another. A TransportOrder may, however, also just describe a vehicle’s movement to a destination
position and an optional vehicle operation to be performed.

All of the following are examples for "transport orders" in openTCS, even if nothing is actually
being transported:

• A classic order for transporting goods from somewhere to somewhere else:

a. Move to location "A" and perform operation "Load cargo" there.

b. Move to location "B" and perform operation "Unload cargo" there.

• Manipulation of transported or stationary goods:

a. Move to location "A" and perform operation "Drill" there.

b. Move to location "B" and perform operation "Hammer" there.

• An order to move the vehicle to a parking position:

a. Move to point "Park 01" (without performing any specific operation).

• An order to recharge the vehicle’s battery:

a. Move to location "Recharge station" and perform operation "Charge battery" there.

2.2.1. A transport order’s life cycle

1. When a transport order is created, its initial state is RAW.

2. A user/client sets parameters for the transport order that are supposed to influence the

6

transport process. These parameters may be e.g. the transport order’s deadline, the vehicle that
is supposed to process the transport order or a set of generic, usually project-specific properties.

3. The transport order is activated, i.e. parameter setup is finished. Its state is set to ACTIVE.

4. The kernel’s router checks whether routing between the transport order’s destinations is
possible at all. If yes, its state is changed to DISPATCHABLE. If routing is not possible, the transport
order is marked as UNROUTABLE and not processed any further.

5. The kernel’s dispatcher checks whether all requirements for executing the transport order are
fulfilled and a vehicle is available for processing it. As long as there are any requirements not
yet fulfilled or no vehicle can execute it, the transport order is left waiting.

6. The kernel’s dispatcher assigns the transport order to a vehicle for processing. Its state is
changed to BEING_PROCESSED.

• If a transport order that is being processed is withdrawn (by a client/user), its state first
changes to WITHDRAWN while the vehicle executes any orders that had already been sent to it.
Then the transport order’s state changes to FAILED. It is not processed any further.

• If processing of the transport order fails for any reason, it is marked as FAILED and not
processed any further.

• If the vehicle successfully processes the transport order as a whole, it is marked as FINISHED.

7. Eventually — after a longer while or when too many transport orders in a final state have
accumulated in the kernel’s order pool — the kernel removes the transport order.

The following state machine visualizes this life cycle:

Figure 3. Transport order states

7

2.2.2. Structure and processing of transport orders

Figure 4. Transport order classes

A transport order is created by calling TransportOrderService.createTransportOrder(). As its
parameter, it expects an instance of TransportOrderCreationTO containing the sequence of
destinations to visit and the operations a vehicle is supposed to perform there. The kernel wraps
each Destination in a newly-created DriveOrder instance. These DriveOrders are themselves wrapped
by the kernel in a single, newly-created TransportOrder instance in their given order.

Once a TransportOrder is being assigned to a vehicle by the Dispatcher, a Route is computed for each
of its DriveOrders. These Routes are then stored in the corresponding DriveOrders.

As soon as a vehicle (driver) is able to process a DriveOrder, the single Steps of its Route are mapped
to MovementCommands. These MovementCommands contain all information the vehicle driver needs to
reach the final destination and to perform the desired operation there.

8

Figure 5. MovementCommand-related classes

The MovementCommands for the partial routes to be travelled are sent to the vehicle driver bit by bit.
The kernel only sends as many MovementCommandss in advance as is required for the vehicle driver to
function properly. It does this to maintain fine-grained control over the paths/resources used by all
vehicles. A vehicle driver may set the maximum number of MovementCommands it gets in advance by
adjusting its command queue capacity.

As soon as a DriveOrder is finished, the Route of the next DriveOrder is mapped to MovementCommands.
Once the last DriveOrder of a TransportOrder is finished, the whole TransportOrder is finished, as
well.

2.2.3. How to create a new transport order

9

 // The transport order service instance we're working with
 TransportOrderService transportOrderService = getATransportOrderServiceReference(
);

 // The dispatcher service instance we're working with
 DispatcherService dispatcherService = getADispatcherServiceReference();

 // A list of destinations the transport order the vehicle is supposed
 // to travel to:
 List<DestinationCreationTO> destinations = new LinkedList<>();
 // Create a new destination description and add it to the list.
 // Every destination is described by the name of the destination
 // location in the plant model and an operation the vehicle is supposed
 // to perform there:
 destinations.add(new DestinationCreationTO("Some location name",
 "Some operation"));
 // Add as many destinations to the list like this as necessary. Then
 // create a transport order description with a name for the new transport
 // order and the list of destinations.
 // Note that the given name needs to be unique.
 TransportOrderCreationTO orderTO
 = new TransportOrderCreationTO("MyTransportOrder",
 destinations);
 // Optionally, express that the actual/full name of the order should be
 // generated by the kernel.
 orderTO = orderTO.withIncompleteName(true);
 // Optionally, assign a specific vehicle to the transport order:
 orderTO = orderTO.withIntendedVehicleName("Some vehicle name");
 // Optionally, set a deadline for the transport order:
 orderTO = orderTO.withDeadline(Instant.now().plus(1, ChronoUnit.HOURS));

 // Create a new transport order for the given description:
 TransportOrder newOrder = transportOrderService.createTransportOrder(orderTO);

 // Trigger the dispatch process for the created transport order.
 dispatcherService.dispatch();

2.2.4. How to create a transport order that sends a vehicle to a point instead
of a location

10

 // The transport order service instance we're working with
 TransportOrderService transportOrderService = getATransportOrderServiceReference(
);

 // The dispatcher service instance we're working with
 DispatcherService dispatcherService = getADispatcherServiceReference();

 // Create a list containing a single destination to a point.
 // Use Destination.OP_MOVE as the operation to be executed:
 List<DestinationCreationTO> destinations = new LinkedList<>();
 destinations.add(new DestinationCreationTO("Some point name",
 Destination.OP_MOVE));
 // Create a transport order description with the destination and a
 // unique name and assign it to a specific vehicle:
 TransportOrderCreationTO orderTO
 = new TransportOrderCreationTO("MyTransportOrder",
 destinations)
 .withIntendedVehicleName("Some vehicle name")
 .withIncompleteName(true);

 // Create a transport order using the description:
 TransportOrder dummyOrder = transportOrderService.createTransportOrder(orderTO);

 // Trigger the dispatch process for the created transport order.
 dispatcherService.dispatch();

2.2.5. Using order sequences

An order sequence can be used to force a single vehicle to process multiple transport orders in a
given order. Some rules for using order sequences are described in the API documentation for
OrderSequence, but here is what you would do in general:

11

 // The transport order service instance we're working with
 TransportOrderService transportOrderService = getATransportOrderServiceReference(
);

 // The dispatcher service instance we're working with
 DispatcherService dispatcherService = getADispatcherServiceReference();

 // Create an order sequence description with a unique name:
 OrderSequenceCreationTO sequenceTO
 = new OrderSequenceCreationTO("MyOrderSequence");
 // Optionally, express that the actual/full name of the sequence should be
 // generated by the kernel.
 sequenceTO = sequenceTO.withIncompleteName(true);
 // Optionally, set the sequence's failure-fatal flag:
 sequenceTO = sequenceTO.withFailureFatal(true);

 // Create the order sequence:
 OrderSequence orderSequence = transportOrderService.createOrderSequence(
sequenceTO);

 // Set up the transport order as usual,
 // but add the wrapping sequence's name:
 List<DestinationCreationTO> destinations = new ArrayList<>();
 destinations.add(new DestinationCreationTO("Some location name",
 "Some operation"));
 TransportOrderCreationTO orderTO
 = new TransportOrderCreationTO("MyOrder-" + UUID.randomUUID(),
 destinations)
 .withWrappingSequence(orderSequence.getName());

 // Create the transport order:
 TransportOrder order = transportOrderService.createTransportOrder(orderTO);

 // Create and add more orders as necessary.
 // Eventually, set the order sequence's complete flag to indicate that more
 // transport orders will not be added to it.
 transportOrderService.markOrderSequenceComplete(orderSequence.getReference());

 // Trigger the dispatch process for the created order sequence.
 dispatcherService.dispatch();

As long as the sequence has not been marked as complete and finished completely, the vehicle
selected for its first order will be tied to this sequence. It will not process any orders not belonging
to the same sequence until the whole sequence has been finished.

Once the complete flag of the sequence has been set and all transport orders belonging to it have
been processed, its finished flag will be set by the kernel.

12

2.2.6. How to withdraw a transport order that is currently being processed

 // The dispatcher service instance we're working with
 DispatcherService dispatcherService = getDispatcherServiceFromSomewhere();

 // Get the transport order to be withdrawn.
 TransportOrder curOrder = getTransportOrderToWithdraw();
 // Withdraw the order.
 // The second argument indicates if the vehicle should finish the movements
 // it is already assigned to (false) or abort immediately (true).
 dispatcherService.withdrawByTransportOrder(curOrder.getReference(), true);

2.2.7. How to withdraw a transport order via a reference on the vehicle
processing it

 // The object service instance we're working with
 TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

 // Get the vehicle from which the transport order shall be withdrawn
 Vehicle curVehicle = objectService.fetchObject(Vehicle.class,
 getSampleVehicle());

 // The dispatcher service instance we're working with
 DispatcherService dispatcherService = getDispatcherServiceFromSomewhere();

 // Withdraw the order.
 // The second argument indicates if the vehicle should finish the movements
 // it is already assigned to (false) or abort immediately (true).
 dispatcherService.withdrawByVehicle(curVehicle.getReference(), true);

2.3. Using the event bus
Each of the main openTCS applications — Kernel, Kernel Control Center and Plant
Overview — provides an event bus that can be used to receive or emit event objects application-
wide. To acquire the respective application’s event bus instance, request it to be provided via
dependency injection. Any of the following three variants of constructor parameters are
equivalent:

public MyClass(@ApplicationEventBus EventHandler eventHandler) {
 ...
}

13

public MyClass(@ApplicationEventBus EventSource eventSource) {
 ...
}

public MyClass(@ApplicationEventBus EventBus eventBus) {
 ...
}

Having acquired the EventHandler, EventSource or EventBus instance that way, you can use it to emit
event objects to it and/or subscribe to receive event objects.

Note that, within the Kernel application, event objects should be emitted via the kernel executor to
avoid concurrency issues — see Executing code in kernel context.

14

Chapter 3. TCP/IP-based interfaces to other
systems

This interface is deprecated and scheduled for removal with openTCS 5.0 in
favour of the kernel’s web API. The web API specification is included in the
openTCS distribution’s documentation.

In addition to the Java-specific kernel interface, openTCS offers the following interfaces for
communication with other systems:

• A bidirectional interface via a TCP/IP connection for the creation of transport orders

• An unidirectional interface via a TCP/IP connection for receiving status messages, e.g. about
transport orders being processed

The TCP/IP interfaces are described in the following sections.

3.1. Creating orders via TCP/IP
For creating transport orders, the openTCS kernel accepts connections to a TCP port (default: port
55555). The communication between openTCS and the host works as follows:

1. The host establishes a new TCP/IP connection to openTCS.

2. The host sends a single XML telegram (described in detail in XML telegrams for creating orders
and XML telegrams referencing order batches) which either describes the transport orders to be
created or identifies batch files that are available with the kernel and that contain the transport
order descriptions.

3. The host closes its output stream of the TCP/IP connection or sends two consecutive line breaks
(i.e. "\r\n\r\n"), letting the kernel know that no further data will follow.

4. openTCS interprets the telegram sent by the host, creates the corresponding transport orders
and activates them.

5. openTCS sends an XML telegram (described in detail in Receipts for created orders) to confirm
processing of the telegram.

6. openTCS closes the TCP/IP connection.

The following points should be respected:

• Multiple sets of transport orders are not intended to be transferred via the same TCP
connection. After processing a set and sending the response, openTCS closes the connection. To
transfer further sets new TCP/IP connections need to be established by the peer system.

• openTCS only waits a limited amount of time (default: ten seconds) for incoming data. If there is
no incoming data from the peer system over a longer period of time, the connection will be
closed by openTCS without any transport orders being created.

• The maximum length of a single XML telegram is limited to 100 kilobytes by default. If more
data is transferred, the connection will be closed without any transport orders being created.

15

3.1.1. XML telegrams for creating orders

Every XML telegram sent to openTCS via the interface described above can describe multiple
transport orders to be created. Every order element must contain the following data:

• A string identifying the order element. This string is required for unambiguous matching of
receipts (see Receipts for created orders) and orders.

• A sequence of destinations and destination operations defining the actual order.

Furthermore, each order element may contain the following data:

• A deadline/point of time at which the order should be finished.

• The name of a vehicle in the system that the order should be assigned to. If this information is
omitted, any vehicle in the system may process the order.

• A set of names of existing transport orders that have to be finished before the new order may be
assigned to a vehicle.

The following example shows how an XML telegram for the creation of two transport orders could
look like.

Example 1: XML telegram for the creation of two transport orders

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsOrderSet>
 <order xsi:type="transport" deadline="2020-12-18T12:01:13.959+01:00"
intendedVehicle="Vehicle-01" id="TransportOrder-01" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <destination locationName="Storage 01" operation="Load cargo"/>
 <destination locationName="Storage 02" operation="Unload cargo"/>
 <property key="waitBefore" value="Unload"/>
 </order>
 <order xsi:type="transport" id="TransportOrder-02" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <destination locationName="Working station 01" operation="Drill">
 <property key="drillSize" value="3"/>
 </destination>
 <destination locationName="Working station 02" operation="Drill">
 <property key="drillSize" value="8"/>
 </destination>
 <destination locationName="Working station 03" operation="Cut"/>
 </order>
</tcsOrderSet>

3.1.2. XML telegrams referencing order batches

Alternatively, an XML telegram may also reference order batches which are kept in files on the
openTCS system. The (parameters of the) transport orders to be created will then be read from the
referenced batch files. A batch file may contain/create an arbitrary number of transport orders and
needs to be placed in the kernel application’s subdirectory scripts. In the openTCS distribution, this

16

directory already contains a couple of templates for batch files (template.tcs and test.tcs).

The following example shows how an XML telegram referencing a batch file could look like.

Example 2: XML telegram referencing a batch file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsOrderSet>
 <order xsi:type="transportScript" fileName="test.tcs" id="test.tcs" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"/>
</tcsOrderSet>

3.1.3. Receipts for created orders

In response to an XML telegram for the creation of transport orders, an XML telegram will be sent
back to the peer, reporting the operation’s outcome. In the response telegram, every order element
of the original telegram will be referenced by a response element with the same ID. Furthermore,
every response element contains:

• A flag reflecting the success of creating the respective order

• The name that openTCS internally assigned to the created order. (This name is relevant for
interpreting the messages on the status channel - see Status messages via TCP/IP.)

The following example shows how a response to the telegram in Example 1 could look like.

Example 3: XML telegram with receipts for created orders

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsResponseSet>
 <response xsi:type="transportResponse" executionSuccessful="true" orderName=
"TOrder-0001" id="TransportOrder-01" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"/>
 <response xsi:type="transportResponse" executionSuccessful="true" orderName=
"TOrder-0002" id="TransportOrder-02" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"/>
</tcsResponseSet>

3.1.4. Receipts for order batches

For referenced order batches, receipts will be sent back to the peer, too. The response contains an
element for every batch file referenced by the peer. If the batch file was successfully read and
processed, a response for every single order definition it contains will be included.

The following example shows a possible response to the batch file reference in Example 2. In this
case, the batch file contains two transport order definitions which have been processed
successfully.

17

Example 4: XML telegram with receipts for orders in batch file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsResponseSet>
 <response xsi:type="scriptResponse" parsingSuccessful="true" id="test.tcs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <transport executionSuccessful="true" orderName="TOrder-0003" id="test.tcs"/>
 <transport executionSuccessful="true" orderName="TOrder-0004" id="test.tcs"/>
 </response>
</tcsResponseSet>

3.2. Status messages via TCP/IP
To receive status messages for transport orders in the system, connections to another TCP port
(default: port 44444) may be established. Whenever the state of a transport order changes, an XML
telegram will be sent to each connnected client, describing the new state of the order. Each of these
telegrams is followed by a string that does not appear in the telegrams themselves (by default, a
single pipe symbol: "|"), marking the end of the respective telegram. Status messages will be sent
until the peer closes the TCP connection.

The following points should be respected:

• From the peer’s point of view, connections to this status channel are purely passive, i.e. openTCS
does not expect any messages from the peer and will not process any data received via this
connection.

• A peer needs to filter the received telegrams for relevant data itself. The openTCS kernel does
not provide any filtering of status messages for clients.

• Due to concurrent processes within openTCS, it is possible that the creation and activation of a
transport order and its assignment to a vehicle is reported via the status channel before the
peer that created the order receives the corresponding receipt.

The following example shows a status message as it would be sent via the status channel after the
first of the two transport orders defined in Example 1 has been created and activated.

18

Example 5: Status message for the generated order

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsStatusMessageSet timeStamp="2020-12-18T12:01:14.225+01:00">
 <statusMessage xsi:type="orderStatusMessage" orderName="TOrder-0001" orderState=
"ACTIVE" processingVehicleName="Vehicle-0001" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <destination locationName="Storage 01" operation="Load cargo" state="PRISTINE
"/>
 <destination locationName="Storage 02" operation="Unload cargo" state=
"PRISTINE"/>
 <property key="waitBefore" value="Unload"/>
 </statusMessage>
</tcsStatusMessageSet>

The following example shows a status message as it would be sent via the status channel for a
vehicle state update.

Example 6: Status message for vehicle update

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tcsStatusMessageSet timeStamp="2020-12-18T12:01:15.215+01:00">
 <statusMessage xsi:type="vehicleStatusMessage" position="Point-000"
processingState="PROCESSING_ORDER" state="EXECUTING" transportOrderName=
"TransportOrder-001" vehicleName="Vehicle-000" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <precisePosition x="100" y="110" z="120"/>
 </statusMessage>
</tcsStatusMessageSet>

3.3. XML Schema definitions for telegrams and scripts
XML schemas describing the expected structure of XML order telegrams and order batch files as
well as the structure of receipt telegrams as sent by openTCS are part of the openTCS distribution
and can be found in the directory containing the developer documentation.

19

Chapter 4. Generating an integration project
openTCS integration projects for customer- or plant-specific distributions often have a very similar
structure. The openTCS distribution provides a way to easily generate such integration projects.
This way, a developer can get started with customizing and extending openTCS components quickly.

To generate a template/skeleton for a new integration project, do the following:

1. Download and unzip the integration project example from the openTCS homepage.

2. Execute the following command from the example project’s root directory: gradlew
cloneProject

The integration project will be generated in the build/ directory. (Make sure you copy it somewhere
else before running the example project’s clean task the next time.)

The project and the included classes will have generic names. You can adjust their names by setting
a couple of properties when running the above command. The following properties are looked at:

• integrationName: Used for the names of the project itself and the subprojects within it.

• classPrefix: Used for some classes within the subprojects.

For instance, your command line could look like this:

gradlew -PintegrationName=MyGreatProject -PclassPrefix=Great cloneProject

This would include MyGreatProject in the integration project name, and Great in some class names.

Inserting your own source code into a copy of the baseline openTCS project
instead of creating a proper integration project as described above is not
recommended. This is because, when integrating openTCS by copying its source
code, you lose the ability to easily upgrade your code to more recent openTCS
versions (for bugfixes or new features).

20

Chapter 5. Customizing and extending the
kernel application

5.1. Guice modules
The openTCS kernel application uses Guice to configure its components. To modify the wiring of
components within the application and to add your own components, you can register custom
Guice modules. Modules are found and registered automatically via java.util.ServiceLoader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of org.opentcs.customizations.kernel.KernelInjectionModule, which can be found
in the base library, must be contained. Configure your custom components or adjust the
application’s default wiring in this module. KernelInjectionModule provides a few supporting
methods you can use.

b. A plain text file named META-

INF/services/org.opentcs.customizations.kernel.KernelInjectionModule must also be
contained. This file should contain a single line of text with the fully qualified class name of
your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the kernel application.

For more information on how the automatic registration works, see the documentation of
java.util.ServiceLoader in the Java class library. For more information on how Guice works, see
the Guice documentation.

5.2. Replacing default kernel components
The kernel application comes with default implementations for the dispatching, routing and
scheduling components. These default implementations allow the kernel to fulfil all of its
responsibilities, but specific use cases might make it necessary to replace them with custom ones. In
such cases, they can be replaced with a custom Guice configuration.

For each of these components, KernelInjectionModule provides a convenience method for
(re)binding the implementation. To replace e.g. the default Dispatcher implementation, simply
register a Guice module in which you call bindDispatcher(). The module’s implementation could
look like this:

@Override
protected void configure() {
 configureSomeDispatcherDependencies();
 bindDispatcher(CustomDispatcher.class);
}

21

Note that all component implementations are bound as singletons. This is
important for the following reason: Components may be injected and used at
multiple places within the kernel application; at the same time, every component
may also have to keep an internal state to do its work. If they were not bound as
singletons, a new instance would be created for every injection, each of them
with their own, separate internal state. Build custom components with that in
mind, and implement their initialize() and terminate() methods appropriately!

5.3. Developing vehicle drivers
openTCS supports integration of custom vehicle drivers that implement vehicle-specific
communication protocols and thus mediate between the kernel and the vehicle. Due to its function,
a vehicle driver is also called a communication adapter. The following sections describe which
requirements must be met by a driver and which steps are necessary to create and use it.

5.3.1. Classes and interfaces for the kernel

Figure 6. Classes of a comm adapter implementation (kernel side)

When developing a vehicle driver, the most important classes and interfaces in the base library are
the following:

• VehicleCommAdapter declares methods that every comm adapter must implement. These methods
are called by components within the kernel, for instance to tell a vehicle that it is supposed to
move to the next position in the driving course. Classes implementing this interface are
expected to perform the actual communication with a vehicle, e.g. via TCP, UDP or some field
bus.

• BasicVehicleCommAdapter is the recommended base class for implementing a VehicleCommAdapter.
It primarily provides some basic command queueing.

• VehicleCommAdapterFactory describes a factory for VehicleCommAdapter instances. The kernel
instantiates and uses one such factory per vehicle driver to create instances of the respective
VehicleCommAdapter implementation on demand.

• A single VehicleProcessModel instance should be provided by every VehicleCommAdapter instance
in which it keeps the relevant state of both the vehicle and the comm adapter. This model

22

instance is supposed to be updated to notify the kernel about relevant changes. The comm
adapter implementation should e.g. update the vehicle’s current position in the model when it
receives that information to allow the kernel and GUI frontends to use it. Likewise, other
components may set values that influence the comm adapter’s behaviour in the model, e.g. a
time interval for periodic messages the comm adapter sends to the vehicle. VehicleProcessModel
may be used as it is, as it contains members for all the information the openTCS kernel itself
needs. However, developers may use driver-specific subclasses of VehicleProcessModel to have
the comm adapter and other components exchange more than the default set of attributes.

5.3.2. Classes and interfaces for the control center

The Kernel Control Center GUI provided by the kernel application itself is
deprecated and scheduled for removal with openTCS 5.0. A separate Kernel
Control Center application is available and should be used instead. For the remote
version of the Kernel Control Center the following interfaces are the most
important.

Figure 7. Classes of a comm adapter implementation (control center side)

• VehicleCommAdapterPanel instances may be created by a VehicleCommAdapterPanelFactory e.g. to
display information about the associated vehicle or send low-level messages to it.

• VehicleProcessModelTO instances should be provided by every VehicleCommAdapter instance
according to the current state of its VehicleProcessModel. Instances of this model are supposed to
be used in a comm adapter’s VehicleCommAdapterPanel instances for updating their contents only.
Note that VehicleProcessModelTO is basically a serializable representation of a comm adapter’s
VehicleProcessModel. Developers should keep that in mind when creating driver-specific
subclasses of VehicleProcessModelTO.

• Instances of VehicleCommAdapterDescription provide a string describing/identifying the comm
adapter implementation. This string is shown e.g. when the user may select one of a set of
driver implementations and should thus be unique. It is also used for attaching a comm adapter
implementation via VehicleService.attachCommAdapter().

23

• AdapterCommand instances can be sent from a panel to a VehicleCommAdapter instance via
VehicleService.sendCommAdapterCommand(). They are supposed to be executed by the comm
adapter and can be used to execute arbitrary methods, e.g. methods of the VehicleCommAdapter
itself, or update contents of the comm adapter’s VehicleProcessModel. Note that AdapterCommand
instances can only be sent to and processed by the kernel application if they are serializable and
present in the kernel application’s classpath.

5.3.3. Steps to create a new vehicle driver

1. Create an implementation of VehicleCommAdapter:

a. Subclass BasicVehicleCommAdapter unless you have a reason not to. You don’t have to, but if
you don’t, you also need to implement command queue management yourself.

b. Implement the abstract methods of BasicVehicleCommAdapter in the derived class to realize
communication with the vehicle and to provide driver-specific visualization panels, if any.

c. In situations in which the state of the vehicle changes in a way that is relevant for the kernel
or the comm adapter’s custom panels, the comm adapter should call the respective methods
on the model. Most importantly, call setVehiclePosition() and commandExecuted() on the
comm adapter’s model when the controlled vehicle’s reported state indicates that it has
moved to a different position or that it has finished an order.

2. Create an implementation of VehicleCommAdapterFactory that provides instances of your
VehicleCommAdapter for given Vehicle objects.

3. Optional: Create any number of implementations of VehicleCommAdapterPanel that the kernel
control center application should display for the comm adapter. Create and return instances of
these panels in the getPanelsFor() method of your VehicleCommAdapterPanelFactorys
implementation.

See the API documentation for more details. For an example, refer to the implementation of the
loopback comm adapter for virtual vehicles in the openTCS source distribution. (Note, however,
that this implementation does not implement communication with any physical vehicle.)

5.3.4. Registering a vehicle driver with the kernel

1. Create a Guice module for your vehicle driver by creating a subclass of KernelInjectionModule.
Implement the configure() method and register a binding to your VehicleCommAdapterFactory.
For example, the loopback driver that is part of the openTCS distribution registers its own
factory class with the following line in its configure() method:

 vehicleCommAdaptersBinder().addBinding().to(
LoopbackCommunicationAdapterFactory.class);

2. In the JAR file containing your driver, ensure that there exists a folder named META-

INF/services/ with a file named org.opentcs.customizations.kernel.KernelInjectionModule. This
file should consist of a single line of text holding simply the name of the Guice module class, e.g.:

24

org.opentcs.virtualvehicle.LoopbackCommAdapterModule

Background: openTCS uses java.util.ServiceLoader to automatically find
Guice modules on startup, which depends on this file (with this name) being
present. See the JDK’s API documentation for more information about how
this mechanism works.

3. Place the JAR file of your driver including all neccessary resources in the subdirectory
lib/openTCS-extensions/ of the openTCS kernel application’s installation directory before the
kernel is started. (The openTCS start scripts include all JAR files in that directory in the
application’s classpath.)

Drivers meeting these requirements are found automatically when you start the kernel.

5.4. Sending messages to communication adapters
Sometimes it is required to have some influence on the behaviour of a communication adapter (and
thus the vehicle it is associated with) directly from a kernel client - to send a special telegram to the
vehicle, for instance. For these cases,
VehicleService.sendCommAdapterMessage(TCSObjectReference<Vehicle>, Object) provides a one-way
communication channel for a client to send a message object to a communication adapter currently
associated with a vehicle. A comm adapter implementing processMessage() may interpret message
objects sent to it and react in an appropriate way. Note that the client sending the message may not
know which communication adapter implementation is currently associated with the vehicle, so
the adapter may or may not be able to understand the message.

5.5. Acquiring data from communication adapters
For getting information from a communication adapter to a kernel client, there are the following
ways:

Communication adapters may publish events via their VehicleProcessModel instance to emit
information encapsulated in an event for any listeners registered with the kernel. Apparently,
listeners must already be registered before such an event is emitted by the communication adapter,
or they will miss it. To register a client as a listener, use EventSource.subscribe(). You can get the
EventSource instance used by the kernel through dependency injection by using the qualifier
annotation org.opentcs.customizations.ApplicationEventBus.

Alternatively, communication adapters may use their VehicleProcessModel to set properties in the
corresponding Vehicle object. Kernel clients may then retrieve the information from it:

25

 // The object service instance we're working with
 TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

 // Get the vehicle from which information shall be retrieved
 Vehicle vehicle = objectService.fetchObject(Vehicle.class, getTheVehicleName());

 // Get the actual property you're looking for
 String property = vehicle.getProperty("someKey");

Communication adapters may also use their VehicleProcessModel to set properties in the
corresponding TransportOrder object a vehicle is currently processing. This basically works the
same way as with the Vehicle object:

 // The Kernel instance we're working with
 TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

 // Get the tansport order from which information shall be retrieved
 TransportOrder transportOrder = objectService.fetchObject(TransportOrder.class,

getTheTransportOrderName());

 // Get the actual property you're looking for
 String property = transportOrder.getProperty("someKey");

Unlike information published via events, data stored as properties in Vehicle or TransportOrder
objects can be retrieved at any time.

5.6. Executing code in kernel context
Within the kernel, concurrent modifications of the data model — e.g. contents of the plant model or
transport order properties — need to be synchronized carefully. Similar to e.g. the Swing
framework’s Event Dispatcher Thread, a single thread is used for executing one-shot or periodics
tasks performing data modifications. To help with this, an instance of
java.util.concurrent.ScheduledExecutorService is provided. Custom code running within the kernel
application, including vehicle drivers and implementations of additional funcionality, should also
perform changes of the data model via this executor only to avoid concurrency issues.

To make use of the kernel’s executor, use the @KernelExecutor qualifier annotation and inject a
ScheduledExecutorService:

@Inject
public MyClass(@KernelExecutor ScheduledExecutorService kernelExecutor) {
 ...
}

You can also inject it as a java.util.concurrent.ExecutorService:

26

@Inject
public MyClass(@KernelExecutor ExecutorService kernelExecutor) {
 ...
}

Injecting a java.util.concurrent.Executor is also possible:

@Inject
public MyClass(@KernelExecutor Executor kernelExecutor) {
 ...
}

Then, you can use it e.g. to lock a path in the plant model in kernel context:

kernelExecutor.submit(() -> routerService.updatePathLock(ref, true));

Due to the single-threaded nature of the kernel executor, tasks submitted to it are executed
sequentially, one after another. This implies that submitting long-running tasks should be avoided,
as they would block the execution of subsequent tasks.

When event objects, e.g. instances of TCSObjectEvent, are distributed within the kernel, this always
happens in kernel context, i.e. from a task that is run by the kernel executor. Event handlers should
behave accordingly and finish quickly/not block execution for too long. If processing an event
requires time-consuming actions to be taken, these should be executed on a different thread.

As its name indicates, the kernel executor is only available within the kernel
application. It is not available for code running in other applications like the
Plant Overview, and it is not required there (for avoiding concurrency issues in
the kernel).

27

Chapter 6. Customizing and extending the
control center application

6.1. Guice modules
The openTCS kernel control center application uses Guice to configure its components. To modify
the wiring of components within the application and to add your own components, you can register
custom Guice modules. Modules are found and registered automatically via
java.util.ServiceLoader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of org.opentcs.customizations.controlcenter.ControlCenterInjectionModule must
be contained. Configure your custom components or adjust the application’s default wiring
in this module. ControlCenterInjectionModule provides a few supporting methods you can
use.

b. A plain text file named META-

INF/services/org.opentcs.customizations.controlcenter.ControlCenterInjectionModule must
also be contained. This file should contain a single line of text with the fully qualified class
name of your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the control center application.

For more information on how the automatic registration works, see the documentation of
java.util.ServiceLoader in the Java class library. For more information on how Guice works, see
the Guice documentation.

6.2. Registering driver panels with the control center
1. Create a Guice module for your vehicle driver by creating a subclass of

ControlCenterInjectionModule. Implement the configure() method and register a binding to your
VehicleCommAdapterPanelFactory. The following example demonstrates how this module’s
configure() method looks like for the loopback driver that is part of the openTCS distribution:

 @Override
 protected void configure() {
 commAdapterPanelFactoryBinder().addBinding().to(
LoopbackCommAdapterPanelFactory.class);
 }

2. In the JAR file containing your driver, ensure that there exists a folder named META-

INF/services/ with a file named
org.opentcs.customizations.controlcenter.ControlCenterInjectionModule. This file should

28

consist of a single line of text holding simply the name of the Guice module class, e.g.:

org.opentcs.controlcenter.LoopbackCommAdapterPanelsModule

Background: openTCS uses java.util.ServiceLoader to automatically find
Guice modules on startup, which depends on this file (with this name) being
present. See the JDK’s API documentation for more information about how
this mechanism works.

3. Place the JAR file of your driver including all neccessary resources in the subdirectory
lib/openTCS-extensions/ of the control center application’s installation directory before the
application is started. (The openTCS start scripts include all JAR files in that directory in the
application’s classpath.)

Panels meeting these requirements are found automatically when you start the kernel control
center application.

29

Chapter 7. Customizing and extending the
plant overview application

7.1. Guice modules
Analogous to the kernel application, the plant overview application uses Guice to configure its
components. To modify the wiring of components within the application and to add your own
components, you can register custom Guice modules. Modules are found and registered
automatically via java.util.ServiceLoader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of PlantOverviewInjectionModule, which can be found in the base library, must be
contained. Configure your custom components or adjust the application’s default wiring in
this module. PlantOverviewInjectionModule provides a few supporting methods you can use.

b. A plain text file named META-

INF/services/org.opentcs.customizations.plantoverview.PlantOverviewInjectionModule must
also be contained. This file should contain a single line of text with the fully qualified class
name of your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the plant overview application.

For more information on how the automatic registration works, see the documentation of
java.util.ServiceLoader in the Java class library. For more information on how Guice works, see
the Guice documentation.

7.2. How to create a plugin panel for the plant
overview client
The plant overview client offers to integrate custom panels providing project-specific functionality.

1. Implement a subclass of PluggablePanel.

2. Implement a PluggablePanelFactory that produces instances of your PluggablePanel.

3. Create a Guice module for your PluggablePanelFactory by subclassing
PlantOverviewInjectionModule. Implement the configure() method and add a binding to your
PluggablePanelFactory using pluggablePanelFactoryBinder(). For example, the load generator
panel that is part of the openTCS distribution is registered with the following line in its module’s
configure() method:

 pluggablePanelFactoryBinder().addBinding().to(ContinuousLoadPanelFactory.class
);

30

4. Build and package the PluggablePanel, PluggablePanelFactory and Guice module into a JAR file.

5. In the JAR file, register the Guice module class as a service of type PlantOverviewInjectionModule.
To do that, ensure that the JAR file contains a folder named META-INF/services/ with a file
named org.opentcs.customizations.plantoverview.PlantOverviewInjectionModule. This file
should consist of a single line of text holding simply the name of the guice module class, e.g.:

org.opentcs.guing.plugins.panels.loadgenerator.LoadGeneratorPanelModule

6. Place the JAR file in the Plant Overview application’s class path (subdirectory lib/openTCS-
extensions/ of the application’s installation directory) and start the application.

7.3. How to create a location/vehicle theme for
openTCS
Locations and vehicles are visualized in the plant overview client using configurable themes. To
customize the appearance of locations and vehicles, new theme implementations can be created
and integrated into the plant overview client.

1. Create a new class which implements LocationTheme or VehicleTheme.

2. Place the JAR file of your theme, containing all required resources, in the subdirectory
lib/openTCS-extensions/ of the openTCS plant overview application’s installation directory
before the application is started. (The openTCS start scripts include all JAR files in that directory
in the application’s classpath.)

3. Set the locationThemeClass or vehicleThemeClass in the Plant Overview application’s
configuration file.

Vehicles or locations in plant models are then rendered using your custom theme.

31

Chapter 8. Supplementing configuration
sources
As described in the openTCS User’s Guide, the openTCS Kernel, Kernel Control Center and Plant
Overview applications read their configurations from properties files. This functionality is provided
by the cfg4j library.

It is possible to register additional configuration sources, e.g. for reading configuration data from
network resources or files in different formats. The mechanism provided by
java.util.ServiceLoader is used for this. The following steps are required for registering a
configuration source:

1. Build a JAR file with the following content:

a. An implementation of SupplementaryConfigurationSource. This interface is part of the
opentcs-impl-configuration-cfg4j artifact, which must be on your project’s classpath.

b. A plain text file named META-

INF/services/org.opentcs.configuration.cfg4j.SupplementaryConfigurationSource. This file
should contain a single line of text with the fully qualified class name of your
implementation.

2. Ensure that the JAR file is part of the classpath when you start the respective application.

It is possible to register multiple supplementary configuration sources this way.

The configuration entries provided by any registered supplementary configuration source may
override configuration entries provided by the properties files that are read by default. Note that
the order in which these additional configuration sources are processed is unspecified.

For more information on how the automatic registration works, see the documentation of
java.util.ServiceLoader in the Java class library.

32

http://www.cfg4j.org/

Chapter 9. Translating the user interfaces
Each openTCS application with a user interface is prepared for internationalization based on Java’s
ResourceBundle mechanism. As a result, the applications can be configured to display texts in
different languages, provided there is a translation in the form of resource bundle property files.
(How this configuration works is described in the User’s Guide.) The openTCS distribution itself
comes with language files for the default language (English) and German. Additional translations
can be integrated primarily by adding JAR files containing property files to the class path.

The following sections explain how to create and integrate a new translation.

Parts of the texts in the distribution may change between openTCS releases.
While this might not happen often, it still means that, when you update to a new
version of openTCS, you may want to check whether your translations are still
correct. If there were textual changes in the openTCS distribution, you may need
to update your language files.

9.1. Extracting default language files
To create a new translation pack for an application, you first need to know what texts to translate.
The best way to do this is to look at the existing language files in the openTCS distribution. These
are contained in the applications' JAR files (opentcs-*.jar), and are by convention kept in a
common directory /i18n/org/opentcs inside these JAR files.

To start your translation work, extract all of the application’s language files into a single directory
first. Since JAR files are really only ZIP files, this can be done using any ZIP utility you like. As an
example, to use unzip in a shell on a Linux system, issue the following command from the
application’s lib/ directory:

unzip "opentcs-*.jar" "i18n/org/opentcs/*.properties"

Alternatively, to use 7-Zip in a shell on a Windows system, issue the following command from the
application’s lib/ directory:

7z x -r "opentcs-*.jar" "i18n\org\opentcs*.properties"

You will find the extracted language files in the i18n/ directory, then. For the Plant Overview
application, an excerpt of that directory’s contents would look similar to this:

33

https://7-zip.org/

i18n/
 org/
 opentcs/
 plantoverview/
 mainMenu.properties
 mainMenu_de.properties
 toolbar.properties
 toolbar_de.properties
 ...

Files whose names end with _de.properties are German translations. You will not need these and
can delete them.

9.2. Creating a translation
Copy the whole i18n/ directory with the English language files to a new, separate directory, e.g.
translation/. Working with a copy ensures that you still have the English version at hand to look up
the original texts when translating.

Then rename all property files in the new directory so their names contain the appropriate
language tag for your translation. If you are e.g. translating to Norwegian, rename
mainMenu.properties to mainMenu_no.properties and the other files accordingly. It is important that
the base name of the file remains the same and only the language tag is added to it.

The next step is doing the actual translation work — open each property file in a text editor and
translate the properties' values in it.

After translating all the files, create a JAR file containing the i18n/ directory with your language
files. You can do this for instance by simply creating a ZIP file and changing its name to end with
.jar.

The result could be a file named e.g. language-pack-norwegian.jar, whose contents should look
similar to this:

i18n/
 org/
 opentcs/
 plantoverview/
 mainMenu_no.properties
 toolbar_no.properties
 ...

9.3. Integrating a translation
Finally, you merely need to add the JAR file you created to the translated application’s class path.
After configuring the application to the respective language and restarting it, you should see your
translations in the user interface.

34

9.4. Updating a translation
As development of openTCS proceeds, parts of the applications' language files may change. This
means that your translations may also need to be updated when you move from one version of
openTCS to a more recent one.

To find out what changes were made and may need to be applied to your translations, you could do
the following:

1. Extract the language files for the old version of the application, e.g. into a directory
translation_old/.

2. Extract the language files for the new version of the application, e.g. into a directory
translation_new/.

3. Create a diff between the two language file versions. For example, on a Linux system you could
run diff -urN translation_old/ translation_new/ > language_changes.diff to write a diff to the
file language_changes.diff.

4. Read the diff to see which new language files and/or entries were added, removed or changed.

Based on the information from the diff, you can apply appropriate changes to your own language
files. Then you merely need to create new JAR files for your translations and add them to the
applications' class paths.

35

https://en.wikipedia.org/wiki/Diff

	openTCS: Developer’s Guide
	Table of Contents
	Chapter 1. Development with openTCS in general
	1.1. System requirements
	1.2. Available artifacts and API compatibility
	1.3. Third-party dependencies
	1.4. Modularity and extensibility
	1.5. Logging
	1.6. Working with the openTCS source code
	1.7. openTCS kernel APIs

	Chapter 2. The kernel’s Java API
	2.1. Acquiring service objects
	2.2. Working with transport orders
	2.2.1. A transport order’s life cycle
	2.2.2. Structure and processing of transport orders
	2.2.3. How to create a new transport order
	2.2.4. How to create a transport order that sends a vehicle to a point instead of a location
	2.2.5. Using order sequences
	2.2.6. How to withdraw a transport order that is currently being processed
	2.2.7. How to withdraw a transport order via a reference on the vehicle processing it

	2.3. Using the event bus

	Chapter 3. TCP/IP-based interfaces to other systems
	3.1. Creating orders via TCP/IP
	3.1.1. XML telegrams for creating orders
	3.1.2. XML telegrams referencing order batches
	3.1.3. Receipts for created orders
	3.1.4. Receipts for order batches

	3.2. Status messages via TCP/IP
	3.3. XML Schema definitions for telegrams and scripts

	Chapter 4. Generating an integration project
	Chapter 5. Customizing and extending the kernel application
	5.1. Guice modules
	5.2. Replacing default kernel components
	5.3. Developing vehicle drivers
	5.3.1. Classes and interfaces for the kernel
	5.3.2. Classes and interfaces for the control center
	5.3.3. Steps to create a new vehicle driver
	5.3.4. Registering a vehicle driver with the kernel

	5.4. Sending messages to communication adapters
	5.5. Acquiring data from communication adapters
	5.6. Executing code in kernel context

	Chapter 6. Customizing and extending the control center application
	6.1. Guice modules
	6.2. Registering driver panels with the control center

	Chapter 7. Customizing and extending the plant overview application
	7.1. Guice modules
	7.2. How to create a plugin panel for the plant overview client
	7.3. How to create a location/vehicle theme for openTCS

	Chapter 8. Supplementing configuration sources
	Chapter 9. Translating the user interfaces
	9.1. Extracting default language files
	9.2. Creating a translation
	9.3. Integrating a translation
	9.4. Updating a translation

